BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 23563086)

  • 1. The wheat chloroplastic proteome.
    Kamal AH; Cho K; Choi JS; Bae KH; Komatsu S; Uozumi N; Woo SH
    J Proteomics; 2013 Nov; 93():326-42. PubMed ID: 23563086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses.
    Zhu D; Luo F; Zou R; Liu J; Yan Y
    J Proteomics; 2021 Mar; 234():104097. PubMed ID: 33401000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic Analysis of Vernalization Responsive Proteins in Winter Wheat Jing841.
    Feng Y; Kong B; Zhang J; Chen X; Yuan J; Tang X; Ma C
    Protein Pept Lett; 2018; 25(3):260-274. PubMed ID: 29345567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration.
    Cheng L; Wang Y; He Q; Li H; Zhang X; Zhang F
    BMC Plant Biol; 2016 Aug; 16(1):188. PubMed ID: 27576435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroplast proteomic analysis of Triticum aestivum L. seedlings responses to low levels of UV-B stress reveals novel molecular mechanism associated with UV-B tolerance.
    Gao L; Wang X; Li Y; Han R
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):7143-7155. PubMed ID: 30652271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards an understanding of wheat chloroplasts: a methodical investigation of thylakoid proteome.
    Kamal AH; Cho K; Komatsu S; Uozumi N; Choi JS; Woo SH
    Mol Biol Rep; 2012 May; 39(5):5069-83. PubMed ID: 22160430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in physiology and protein abundance in salt-stressed wheat chloroplasts.
    Kamal AH; Cho K; Kim DE; Uozumi N; Chung KY; Lee SY; Choi JS; Cho SW; Shin CS; Woo SH
    Mol Biol Rep; 2012 Sep; 39(9):9059-74. PubMed ID: 22736107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line.
    Xu W; Lv H; Zhao M; Li Y; Qi Y; Peng Z; Xia G; Wang M
    Sci Rep; 2016 Aug; 6():32384. PubMed ID: 27562633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure.
    Yasmeen F; Raja NI; Razzaq A; Komatsu S
    Biochim Biophys Acta; 2016 Nov; 1864(11):1586-98. PubMed ID: 27530299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus.
    Wang J; Meng Y; Li B; Ma X; Lai Y; Si E; Yang K; Xu X; Shang X; Wang H; Wang D
    Plant Cell Environ; 2015 Apr; 38(4):655-69. PubMed ID: 25124288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of changes in the Kandelia candel chloroplast proteins reveals pathways associated with salt tolerance.
    Wang L; Pan D; Li J; Tan F; Hoffmann-Benning S; Liang W; Chen W
    Plant Sci; 2015 Feb; 231():159-72. PubMed ID: 25576001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress-related genes distinctly expressed in unfertilized wheat ovaries under both normal and water deficit conditions whereas differed in fertilized ovaries.
    Qin Y; Song W; Xiao S; Yin G; Zhu Y; Yan Y; Hu Y
    J Proteomics; 2014 May; 102():11-27. PubMed ID: 24607492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The iTRAQ-based chloroplast proteomic analysis of Triticum aestivum L. leaves subjected to drought stress and 5-aminolevulinic acid alleviation reveals several proteins involved in the protection of photosynthesis.
    Wang Y; Li X; Liu N; Wei S; Wang J; Qin F; Suo B
    BMC Plant Biol; 2020 Mar; 20(1):96. PubMed ID: 32131734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery.
    Lv DW; Zhu GR; Zhu D; Bian YW; Liang XN; Cheng ZW; Deng X; Yan YM
    J Proteomics; 2016 Jun; 143():93-105. PubMed ID: 27095598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endoplasmic Reticulum Subproteome Analysis Reveals Underlying Defense Mechanisms of Wheat Seedling Leaves under Salt Stress.
    Zhang J; Liu D; Zhu D; Liu N; Yan Y
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34063651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of the chloroplast proteomes of a wheat (Triticum aestivum L.) single seed descent line and its parents.
    He ZH; Li HW; Shen Y; Li ZS; Mi H
    J Plant Physiol; 2013 Sep; 170(13):1139-47. PubMed ID: 23683508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloroplast proteomics: potentials and challenges.
    Baginsky S; Gruissem W
    J Exp Bot; 2004 May; 55(400):1213-20. PubMed ID: 15020636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress.
    Zhang H; Ni Z; Chen Q; Guo Z; Gao W; Su X; Qu Y
    Mol Genet Genomics; 2016 Jun; 291(3):1293-303. PubMed ID: 26941218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic strategy for proteomic analysis of chloroplast protein complexes in wheat.
    Meng Q; Rao L; Xiang X; Zhou C; Zhang X; Pan Y
    Biosci Biotechnol Biochem; 2011; 75(11):2194-9. PubMed ID: 22056444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedlings (Triticum aestivum L.).
    Kang G; Li G; Zheng B; Han Q; Wang C; Zhu Y; Guo T
    Biochim Biophys Acta; 2012 Dec; 1824(12):1324-33. PubMed ID: 22868037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.