These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 23563313)

  • 1. CCDC22 deficiency in humans blunts activation of proinflammatory NF-κB signaling.
    Starokadomskyy P; Gluck N; Li H; Chen B; Wallis M; Maine GN; Mao X; Zaidi IW; Hein MY; McDonald FJ; Lenzner S; Zecha A; Ropers HH; Kuss AW; McGaughran J; Gecz J; Burstein E
    J Clin Invest; 2013 May; 123(5):2244-56. PubMed ID: 23563313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of COMMD protein-protein interactions in NF-kappaB signalling.
    de Bie P; van de Sluis B; Burstein E; Duran KJ; Berger R; Duckett CS; Wijmenga C; Klomp LW
    Biochem J; 2006 Aug; 398(1):63-71. PubMed ID: 16573520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ubiquitin-associated domain-containing ubiquitin regulatory X (UBX) protein UBXN1 is a negative regulator of nuclear factor κB (NF-κB) signaling.
    Wang YB; Tan B; Mu R; Chang Y; Wu M; Tu HQ; Zhang YC; Guo SS; Qin XH; Li T; Li WH; Li AL; Zhang XM; Li HY
    J Biol Chem; 2015 Apr; 290(16):10395-405. PubMed ID: 25681446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The COMMD Family Regulates Plasma LDL Levels and Attenuates Atherosclerosis Through Stabilizing the CCC Complex in Endosomal LDLR Trafficking.
    Fedoseienko A; Wijers M; Wolters JC; Dekker D; Smit M; Huijkman N; Kloosterhuis N; Klug H; Schepers A; Willems van Dijk K; Levels JHM; Billadeau DD; Hofker MH; van Deursen J; Westerterp M; Burstein E; Kuivenhoven JA; van de Sluis B
    Circ Res; 2018 Jun; 122(12):1648-1660. PubMed ID: 29545368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning NF-κB activity: a touch of COMMD proteins.
    Bartuzi P; Hofker MH; van de Sluis B
    Biochim Biophys Acta; 2013 Dec; 1832(12):2315-21. PubMed ID: 24080195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity.
    Karin M; Ben-Neriah Y
    Annu Rev Immunol; 2000; 18():621-63. PubMed ID: 10837071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COMMD1/Murr1 reinforces HIV-1 latent infection through IκB-α stabilization.
    Taura M; Kudo E; Kariya R; Goto H; Matsuda K; Hattori S; Vaeteewoottacharn K; McDonald F; Suico MA; Shuto T; Kai H; Okada S
    J Virol; 2015 Mar; 89(5):2643-58. PubMed ID: 25520503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterozygous N-terminal deletion of IkappaBalpha results in functional nuclear factor kappaB haploinsufficiency, ectodermal dysplasia, and immune deficiency.
    McDonald DR; Mooster JL; Reddy M; Bawle E; Secord E; Geha RS
    J Allergy Clin Immunol; 2007 Oct; 120(4):900-7. PubMed ID: 17931563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. COMMD proteins, a novel family of structural and functional homologs of MURR1.
    Burstein E; Hoberg JE; Wilkinson AS; Rumble JM; Csomos RA; Komarck CM; Maine GN; Wilkinson JC; Mayo MW; Duckett CS
    J Biol Chem; 2005 Jun; 280(23):22222-32. PubMed ID: 15799966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IkappaB/NF-kappaB mediated cisplatin resistance in HeLa cells after low-dose gamma-irradiation is associated with altered SODD expression.
    Eichholtz-Wirth H; Sagan D
    Apoptosis; 2000 Jun; 5(3):255-63. PubMed ID: 11225847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive and negative regulation of nuclear factor-kappaB-mediated transcription by IkappaB-zeta, an inducible nuclear protein.
    Motoyama M; Yamazaki S; Eto-Kimura A; Takeshige K; Muta T
    J Biol Chem; 2005 Mar; 280(9):7444-51. PubMed ID: 15618216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HSCARG regulates NF-kappaB activation by promoting the ubiquitination of RelA or COMMD1.
    Lian M; Zheng X
    J Biol Chem; 2009 Jul; 284(27):17998-8006. PubMed ID: 19433587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of NF-κB by ubiquitination and degradation of the IκBs.
    Kanarek N; Ben-Neriah Y
    Immunol Rev; 2012 Mar; 246(1):77-94. PubMed ID: 22435548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ubiquitin ligase HERC3 attenuates NF-κB-dependent transcription independently of its enzymatic activity by delivering the RelA subunit for degradation.
    Hochrainer K; Pejanovic N; Olaseun VA; Zhang S; Iadecola C; Anrather J
    Nucleic Acids Res; 2015 Nov; 43(20):9889-904. PubMed ID: 26476452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clusterin facilitates COMMD1 and I-kappaB degradation to enhance NF-kappaB activity in prostate cancer cells.
    Zoubeidi A; Ettinger S; Beraldi E; Hadaschik B; Zardan A; Klomp LW; Nelson CC; Rennie PS; Gleave ME
    Mol Cancer Res; 2010 Jan; 8(1):119-30. PubMed ID: 20068069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of transcription factor NF-kappaB requires ELKS, an IkappaB kinase regulatory subunit.
    Ducut Sigala JL; Bottero V; Young DB; Shevchenko A; Mercurio F; Verma IM
    Science; 2004 Jun; 304(5679):1963-7. PubMed ID: 15218148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of TRAF3 and -6 in the activation of the NF-kappa B and JNK pathways by X-linked ectodermal dysplasia receptor.
    Sinha SK; Zachariah S; Quiñones HI; Shindo M; Chaudhary PM
    J Biol Chem; 2002 Nov; 277(47):44953-61. PubMed ID: 12270937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N4BP1 negatively regulates NF-κB by binding and inhibiting NEMO oligomerization.
    Shi H; Sun L; Wang Y; Liu A; Zhan X; Li X; Tang M; Anderton P; Hildebrand S; Quan J; Ludwig S; Moresco EMY; Beutler B
    Nat Commun; 2021 Mar; 12(1):1379. PubMed ID: 33654074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullin-containing ubiquitin ligase.
    Maine GN; Mao X; Komarck CM; Burstein E
    EMBO J; 2007 Jan; 26(2):436-47. PubMed ID: 17183367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a novel CCDC22 mutation in a patient with severe Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis and aggressive natural killer cell leukemia.
    Yamashita Y; Nishikawa A; Iwahashi Y; Fujimoto M; Sasaki I; Mishima H; Kinoshita A; Hemmi H; Kanazawa N; Ohshima K; Imadome KI; Murata SI; Yoshiura KI; Kaisho T; Sonoki T; Tamura S
    Int J Hematol; 2019 Jun; 109(6):744-750. PubMed ID: 30706328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.