These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. DNA origami nanopores for controlling DNA translocation. Hernández-Ainsa S; Bell NA; Thacker VV; Göpfrich K; Misiunas K; Fuentes-Perez ME; Moreno-Herrero F; Keyser UF ACS Nano; 2013 Jul; 7(7):6024-30. PubMed ID: 23734828 [TBL] [Abstract][Full Text] [Related]
3. Surface-charge induced ion depletion and sample stacking near single nanopores in microfluidic devices. Zhou K; Kovarik ML; Jacobson SC J Am Chem Soc; 2008 Jul; 130(27):8614-6. PubMed ID: 18549214 [TBL] [Abstract][Full Text] [Related]
4. Single glass nanopore-based regenerable sensing platforms with a non-immobilized polyglutamic acid probe for selective detection of cupric ions. Chen L; He H; Xu X; Jin Y Anal Chim Acta; 2015 Aug; 889():98-105. PubMed ID: 26343431 [TBL] [Abstract][Full Text] [Related]
5. Controllable Shrinking of Glass Capillary Nanopores Down to sub-10 nm by Wet-Chemical Silanization for Signal-Enhanced DNA Translocation. Xu X; Li C; Zhou Y; Jin Y ACS Sens; 2017 Oct; 2(10):1452-1457. PubMed ID: 28971672 [TBL] [Abstract][Full Text] [Related]
6. Single protein molecule detection by glass nanopores. Li W; Bell NA; Hernández-Ainsa S; Thacker VV; Thackray AM; Bujdoso R; Keyser UF ACS Nano; 2013 May; 7(5):4129-34. PubMed ID: 23607870 [TBL] [Abstract][Full Text] [Related]
7. Multichannel simultaneous measurements of single-molecule translocation in alpha-hemolysin nanopore array. Osaki T; Suzuki H; Le Pioufle B; Takeuchi S Anal Chem; 2009 Dec; 81(24):9866-70. PubMed ID: 20000639 [TBL] [Abstract][Full Text] [Related]
8. Impedance characteristics of amine modified single glass nanopores. Feng J; Liu J; Wu B; Wang G Anal Chem; 2010 Jun; 82(11):4520-8. PubMed ID: 20438057 [TBL] [Abstract][Full Text] [Related]
9. DNA origami gatekeepers for solid-state nanopores. Wei R; Martin TG; Rant U; Dietz H Angew Chem Int Ed Engl; 2012 May; 51(20):4864-7. PubMed ID: 22489067 [TBL] [Abstract][Full Text] [Related]
10. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Bell NA; Keyser UF Nat Nanotechnol; 2016 Jul; 11(7):645-51. PubMed ID: 27043197 [TBL] [Abstract][Full Text] [Related]
11. A patch-clamp ASIC for nanopore-based DNA analysis. Kim J; Maitra R; Pedrotti KD; Dunbar WB IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):285-95. PubMed ID: 23853328 [TBL] [Abstract][Full Text] [Related]
12. Detection of long and short DNA using nanopores with graphitic polyhedral edges. Freedman KJ; Ahn CW; Kim MJ ACS Nano; 2013 Jun; 7(6):5008-16. PubMed ID: 23713602 [TBL] [Abstract][Full Text] [Related]
13. Slowing down DNA translocation through a nanopore by lowering fluid temperature. Yeh LH; Zhang M; Joo SW; Qian S Electrophoresis; 2012 Dec; 33(23):3458-65. PubMed ID: 23124983 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing. Bafna JA; Soni GV PLoS One; 2016; 11(6):e0157399. PubMed ID: 27285088 [TBL] [Abstract][Full Text] [Related]
15. Label-free in-flow detection of single DNA molecules using glass nanopipettes. Gong X; Patil AV; Ivanov AP; Kong Q; Gibb T; Dogan F; deMello AJ; Edel JB Anal Chem; 2014 Jan; 86(1):835-41. PubMed ID: 24328180 [TBL] [Abstract][Full Text] [Related]
16. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. Liao Y; Cheng Y; Liu C; Song J; He F; Shen Y; Chen D; Xu Z; Fan Z; Wei X; Sugioka K; Midorikawa K Lab Chip; 2013 Apr; 13(8):1626-31. PubMed ID: 23463190 [TBL] [Abstract][Full Text] [Related]
17. Voltage-driven transport of ions and DNA through nanocapillaries. Steinbock LJ; Lucas A; Otto O; Keyser UF Electrophoresis; 2012 Dec; 33(23):3480-7. PubMed ID: 23147888 [TBL] [Abstract][Full Text] [Related]