These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 23563928)

  • 1. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation.
    Wang G; Ling Y; Lu X; Zhai T; Qian F; Tong Y; Li Y
    Nanoscale; 2013 May; 5(10):4129-33. PubMed ID: 23563928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of a Nickel-Based Oxygen Evolution Reaction Catalyst on a Hematite Photoanode via Incorporation of Cerium for Photoelectrochemical Water Oxidation.
    Lim H; Kim JY; Evans EJ; Rai A; Kim JH; Wygant BR; Mullins CB
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30654-30661. PubMed ID: 28813595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite.
    Riha SC; Klahr BM; Tyo EC; Seifert S; Vajda S; Pellin MJ; Hamann TW; Martinson AB
    ACS Nano; 2013 Mar; 7(3):2396-405. PubMed ID: 23398051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced photocatalytic water oxidation efficiency with Ni(OH)₂ catalysts deposited on α-Fe₂O₃ via ALD.
    Young KM; Hamann TW
    Chem Commun (Camb); 2014 Aug; 50(63):8727-30. PubMed ID: 24963754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.
    Seabold JA; Choi KS
    J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite.
    Sun Y; Chemelewski WD; Berglund SP; Li C; He H; Shi G; Mullins CB
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5494-9. PubMed ID: 24665964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation.
    Ling Y; Wang G; Wang H; Yang Y; Li Y
    ChemSusChem; 2014 Mar; 7(3):848-53. PubMed ID: 24493003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water oxidation at hematite photoelectrodes: the role of surface states.
    Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J
    J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with "Co-Pi"-coated hematite electrodes.
    Klahr B; Gimenez S; Fabregat-Santiago F; Bisquert J; Hamann TW
    J Am Chem Soc; 2012 Oct; 134(40):16693-700. PubMed ID: 22950478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Atom Iridium on Hematite Photoanodes for Solar Water Splitting: Catalyst or Spectator?
    Guo Q; Zhao Q; Crespo-Otero R; Di Tommaso D; Tang J; Dimitrov SD; Titirici MM; Li X; Jorge Sobrido AB
    J Am Chem Soc; 2023 Jan; 145(3):1686-1695. PubMed ID: 36631927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piezotronic-Enhanced Photoelectrochemical Reactions in Ni(OH)2-Decorated ZnO Photoanodes.
    Li H; Yu Y; Starr MB; Li Z; Wang X
    J Phys Chem Lett; 2015 Sep; 6(17):3410-6. PubMed ID: 26279397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating Charge Transfer Efficiency of Hematite Photoanode with Hybrid Dual-Metal-Organic Frameworks for Boosting Photoelectrochemical Water Oxidation.
    Wang K; Liu Y; Kawashima K; Yang X; Yin X; Zhan F; Liu M; Qiu X; Li W; Mullins CB; Li J
    Adv Sci (Weinh); 2020 Dec; 7(23):2002563. PubMed ID: 33304764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis.
    Liao P; Keith JA; Carter EA
    J Am Chem Soc; 2012 Aug; 134(32):13296-309. PubMed ID: 22788792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water oxidation catalysis: effects of nickel incorporation on the structural and chemical properties of the α-Fe₂O₃(0001) surface.
    Zhao P; Koel BE
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22289-96. PubMed ID: 25423044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation.
    Zhu C; Li C; Zheng M; Delaunay JJ
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22355-63. PubMed ID: 26400020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation.
    Hamd W; Cobo S; Fize J; Baldinozzi G; Schwartz W; Reymermier M; Pereira A; Fontecave M; Artero V; Laberty-Robert C; Sanchez C
    Phys Chem Chem Phys; 2012 Oct; 14(38):13224-32. PubMed ID: 22911106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Ni(OH)2-modified Ti-doped α-Fe2O3 photoanode for improved photoelectrochemical oxidation of urea: the role of Ni(OH)2 as a cocatalyst.
    Xu D; Fu Z; Wang D; Lin Y; Sun Y; Meng D; Feng Xie T
    Phys Chem Chem Phys; 2015 Oct; 17(37):23924-30. PubMed ID: 26309038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.