These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 23563928)

  • 21. Surface treatment of hematite photoanodes with zinc acetate for water oxidation.
    Xi L; Bassi PS; Chiam SY; Mak WF; Tran PD; Barber J; Chye Loo JS; Wong LH
    Nanoscale; 2012 Aug; 4(15):4430-3. PubMed ID: 22688799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphology and Doping Engineering of Sn-Doped Hematite Nanowire Photoanodes.
    Li M; Yang Y; Ling Y; Qiu W; Wang F; Liu T; Song Y; Liu X; Fang P; Tong Y; Li Y
    Nano Lett; 2017 Apr; 17(4):2490-2495. PubMed ID: 28334530
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gradient FeO(x)(PO4)(y) layer on hematite photoanodes: novel structure for efficient light-driven water oxidation.
    Zhang Y; Zhou Z; Chen C; Che Y; Ji H; Ma W; Zhang J; Song D; Zhao J
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12844-51. PubMed ID: 25068504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanostructure-Preserved Hematite Thin Film for Efficient Solar Water Splitting.
    Kim JY; Youn DH; Kim JH; Kim HG; Lee JS
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14123-9. PubMed ID: 26046296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ XAS study of CoB
    Xi L; Schwanke C; Zhou D; Drevon D; van de Krol R; Lange KM
    Dalton Trans; 2017 Nov; 46(45):15719-15726. PubMed ID: 29095446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Marked enhancement in electron-hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes.
    Park Y; Kang D; Choi KS
    Phys Chem Chem Phys; 2014 Jan; 16(3):1238-46. PubMed ID: 24296682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interface Engineering of Hematite with Nacre-like Catalytic Multilayers for Solar Water Oxidation.
    Choi Y; Jeon D; Choi Y; Kim D; Kim N; Gu M; Bae S; Lee T; Lee HW; Kim BS; Ryu J
    ACS Nano; 2019 Jan; 13(1):467-475. PubMed ID: 30512922
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Empirical Analysis of the Photoelectrochemical Impedance Response of Hematite Photoanodes for Water Photo-oxidation.
    Klotz D; Grave DA; Dotan H; Rothschild A
    J Phys Chem Lett; 2018 Mar; 9(6):1466-1472. PubMed ID: 29512388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porous versus Compact Nanosized Fe(III)-Based Water Oxidation Catalyst for Photoanodes Functionalization.
    Orlandi M; Dalle Carbonare N; Caramori S; Bignozzi CA; Berardi S; Mazzi A; El Koura Z; Bazzanella N; Patel N; Miotello A
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20003-11. PubMed ID: 27447454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hematite photoanodes modified with an Fe(III) water oxidation catalyst.
    Dalle Carbonare N; Cristino V; Berardi S; Carli S; Argazzi R; Caramori S; Meda L; Tacca A; Bignozzi CA
    Chemphyschem; 2014 Apr; 15(6):1164-74. PubMed ID: 24643917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface aspects of sol-gel derived hematite films for the photoelectrochemical oxidation of water.
    Herrmann-Geppert I; Bogdanoff P; Radnik J; Fengler S; Dittrich T; Fiechter S
    Phys Chem Chem Phys; 2013 Feb; 15(5):1389-98. PubMed ID: 23247669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoelectrochemical Performance of the Ag(III)-Based Oxygen-Evolving Catalyst.
    Sordello F; Ghibaudo M; Minero C
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23800-23809. PubMed ID: 28660756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bifunctional citrate-Ni
    Wang P; Li F; Long X; Wang T; Chai H; Yang H; Li S; Ma J; Jin J
    Nanoscale; 2021 Sep; 13(33):14197-14206. PubMed ID: 34477701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting.
    Shi X; Zhang K; Shin K; Moon JH; Lee TW; Park JH
    Phys Chem Chem Phys; 2013 Jul; 15(28):11717-22. PubMed ID: 23752489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials.
    Mayer MT; Du C; Wang D
    J Am Chem Soc; 2012 Aug; 134(30):12406-9. PubMed ID: 22800199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of oxygen evolution catalysts on hematite nanorods for solar water oxidation.
    Hong YR; Liu Z; Al-Bukhari SF; Lee CJ; Yung DL; Chi D; Hor TS
    Chem Commun (Camb); 2011 Oct; 47(38):10653-5. PubMed ID: 21881644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Better Together: Ilmenite/Hematite Junctions for Photoelectrochemical Water Oxidation.
    Berardi S; Kopula Kesavan J; Amidani L; Meloni EM; Marelli M; Boscherini F; Caramori S; Pasquini L
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47435-47446. PubMed ID: 32986954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pivotal Role and Regulation of Proton Transfer in Water Oxidation on Hematite Photoanodes.
    Zhang Y; Zhang H; Ji H; Ma W; Chen C; Zhao J
    J Am Chem Soc; 2016 Mar; 138(8):2705-11. PubMed ID: 26859244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes.
    Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS
    ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loading the FeNiOOH cocatalyst on Pt-modified hematite nanostructures for efficient solar water oxidation.
    Deng J; Lv X; Zhang H; Zhao B; Sun X; Zhong J
    Phys Chem Chem Phys; 2016 Apr; 18(15):10453-8. PubMed ID: 27029763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.