These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 23563980)
41. An ultrasonic through-transmission technique for monitoring the setting of injectable calcium phosphate cement. Rajzer I; Piekarczyk W; Castaño O Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():20-25. PubMed ID: 27287094 [TBL] [Abstract][Full Text] [Related]
42. Fully injectable calcium phosphate cement--a promise to dentistry. Komath M; Varma HK Indian J Dent Res; 2004; 15(3):89-95. PubMed ID: 15915629 [TBL] [Abstract][Full Text] [Related]
43. Injectability of calcium phosphate pastes. Bohner M; Baroud G Biomaterials; 2005 May; 26(13):1553-63. PubMed ID: 15522757 [TBL] [Abstract][Full Text] [Related]
44. Phase transformations, microstructure formation and in vitro osteoblast response in calcium silicate/brushite cement composites. Sopcak T; Medvecky L; Giretova M; Kovalcikova A; Stulajterova R; Durisin J Biomed Mater; 2016 Aug; 11(4):045013. PubMed ID: 27509265 [TBL] [Abstract][Full Text] [Related]
45. Structural and phase characterization of bioceramics prepared from tetracalcium phosphate-monetite cement and in vitro osteoblast response. Stulajterova R; Medvecky L; Giretova M; Sopcak T J Mater Sci Mater Med; 2015 May; 26(5):183. PubMed ID: 25893389 [TBL] [Abstract][Full Text] [Related]
46. Relevance of the setting reaction to the injectability of tricalcium phosphate pastes. Montufar EB; Maazouz Y; Ginebra MP Acta Biomater; 2013 Apr; 9(4):6188-98. PubMed ID: 23219844 [TBL] [Abstract][Full Text] [Related]
47. Development of monetite/phosphorylated chitosan composite bone cement. Boroujeni NM; Zhou H; Luchini TJ; Bhaduri SB J Biomed Mater Res B Appl Biomater; 2014 Feb; 102(2):260-6. PubMed ID: 23997033 [TBL] [Abstract][Full Text] [Related]
48. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: a novel solution to the exothermicity problem. Zhou H; Agarwal AK; Goel VK; Bhaduri SB Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4288-94. PubMed ID: 23910345 [TBL] [Abstract][Full Text] [Related]
49. Injectable biomaterials for minimally invasive orthopedic treatments. Jayabalan M; Shalumon KT; Mitha MK J Mater Sci Mater Med; 2009 Jun; 20(6):1379-87. PubMed ID: 19160023 [TBL] [Abstract][Full Text] [Related]
50. Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres. Qi X; Ye J; Wang Y Acta Biomater; 2008 Nov; 4(6):1837-45. PubMed ID: 18555756 [TBL] [Abstract][Full Text] [Related]
51. Injectable and fast resorbable calcium phosphate cement for body-setting bone grafts. Rajzer I; Castaño O; Engel E; Planell JA J Mater Sci Mater Med; 2010 Jul; 21(7):2049-56. PubMed ID: 20386961 [TBL] [Abstract][Full Text] [Related]
53. Direct and interactive influence of explanatory variables on properties of a calcium phosphate cement for vertebral body augmentation. Werdofa DM; Lewis G J Mater Sci Mater Med; 2014 Jan; 25(1):55-66. PubMed ID: 24046084 [TBL] [Abstract][Full Text] [Related]
54. Effect of adding sodium hexametaphosphate liquefier on basic properties of calcium phosphate cements. Hesaraki S; Zamanian A; Moztarzadeh F J Biomed Mater Res A; 2009 Feb; 88(2):314-21. PubMed ID: 18286603 [TBL] [Abstract][Full Text] [Related]
55. Biphasic products of dicalcium phosphate-rich cement with injectability and nondispersibility. Ko CL; Chen JC; Hung CC; Wang JC; Tien YC; Chen WC Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():40-6. PubMed ID: 24863195 [TBL] [Abstract][Full Text] [Related]
56. Novel injectable strontium-hardystonite phosphate cement for cancellous bone filling applications. No YJ; Xin X; Ramaswamy Y; Li Y; Roohaniesfahani S; Mustaffa S; Shi J; Jiang X; Zreiqat H Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():103-115. PubMed ID: 30678894 [TBL] [Abstract][Full Text] [Related]
57. Crosslinking characteristics of an injectable poly(propylene fumarate)/beta-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. Peter SJ; Kim P; Yasko AW; Yaszemski MJ; Mikos AG J Biomed Mater Res; 1999 Mar; 44(3):314-21. PubMed ID: 10397934 [TBL] [Abstract][Full Text] [Related]
58. The Effect of the Thermosensitive Biodegradable PLGA⁻PEG⁻PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement. Vojtova L; Michlovska L; Valova K; Zboncak M; Trunec M; Castkova K; Krticka M; Pavlinakova V; Polacek P; Dzurov M; Lukasova V; Rampichova M; Suchy T; Sedlacek R; Ginebra MP; Montufar EB Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30658476 [TBL] [Abstract][Full Text] [Related]
59. Particle attrition of alpha-tricalcium phosphate: effect on mechanical, handling, and injectability properties of calcium phosphate cements. Jack V; Buchanan FJ; Dunne NJ Proc Inst Mech Eng H; 2008 Jan; 222(1):19-28. PubMed ID: 18335715 [TBL] [Abstract][Full Text] [Related]
60. Structure, properties and animal study of a calcium phosphate/calcium sulfate composite cement. Chen WL; Chen CK; Lee JW; Lee YL; Ju CP; Lin JH Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():60-7. PubMed ID: 24582223 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]