These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 23564190)

  • 1. Spaceflight-induced bone loss: is there an osteoporosis risk?
    Sibonga JD
    Curr Osteoporos Rep; 2013 Jun; 11(2):92-8. PubMed ID: 23564190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss.
    Sibonga J; Matsumoto T; Jones J; Shapiro J; Lang T; Shackelford L; Smith SM; Young M; Keyak J; Kohri K; Ohshima H; Spector E; LeBlanc A
    Bone; 2019 Nov; 128():112037. PubMed ID: 31400472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Quantitative Computed Tomography to Assess for Clinically-relevant Skeletal Effects of Prolonged Spaceflight on Astronaut Hips.
    Sibonga JD; Spector ER; Keyak JH; Zwart SR; Smith SM; Lang TF
    J Clin Densitom; 2020; 23(2):155-164. PubMed ID: 31558405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA Bone Summit.
    Orwoll ES; Adler RA; Amin S; Binkley N; Lewiecki EM; Petak SM; Shapses SA; Sinaki M; Watts NB; Sibonga JD
    J Bone Miner Res; 2013 Jun; 28(6):1243-55. PubMed ID: 23553962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating Bone Loss in ISS Astronauts.
    Sibonga JD; Spector ER; Johnston SL; Tarver WJ
    Aerosp Med Hum Perform; 2015 Dec; 86(12 Suppl):A38-A44. PubMed ID: 26630194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight.
    Leblanc A; Matsumoto T; Jones J; Shapiro J; Lang T; Shackelford L; Smith SM; Evans H; Spector E; Ploutz-Snyder R; Sibonga J; Keyak J; Nakamura T; Kohri K; Ohshima H
    Osteoporos Int; 2013 Jul; 24(7):2105-14. PubMed ID: 23334732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A human mission to Mars: Predicting the bone mineral density loss of astronauts.
    Axpe E; Chan D; Abegaz MF; Schreurs AS; Alwood JS; Globus RK; Appel EA
    PLoS One; 2020; 15(1):e0226434. PubMed ID: 31967993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spaceflight osteoporosis: current state and future perspective.
    Cappellesso R; Nicole L; Guido A; Pizzol D
    Endocr Regul; 2015 Oct; 49(4):231-9. PubMed ID: 26494042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Case for Bisphosphonate Use in Astronauts Flying Long-Duration Missions.
    Rosenthal R; Schneider VS; Jones JA; Sibonga JD
    Cells; 2024 Aug; 13(16):. PubMed ID: 39195227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal effects of long-duration head-down bed rest.
    Spector ER; Smith SM; Sibonga JD
    Aviat Space Environ Med; 2009 May; 80(5 Suppl):A23-8. PubMed ID: 19476166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interventions to prevent bone loss in astronauts during space flight.
    Iwamoto J; Takeda T; Sato Y
    Keio J Med; 2005 Jun; 54(2):55-9. PubMed ID: 16077253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A statistical method (cross-validation) for bone loss region detection after spaceflight.
    Zhao Q; Li W; Li C; Chu PW; Kornak J; Lang TF; Fang J; Lu Y
    Australas Phys Eng Sci Med; 2010 Jun; 33(2):163-9. PubMed ID: 20632144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurosurgery and spinal adaptations in spaceflight: A literature review.
    Lazzari ZT; Aria KM; Menger R
    Clin Neurol Neurosurg; 2021 Aug; 207():106755. PubMed ID: 34126454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spaceflight-Induced Bone Tissue Changes that Affect Bone Quality and Increase Fracture Risk.
    Coulombe JC; Senwar B; Ferguson VL
    Curr Osteoporos Rep; 2020 Feb; 18(1):1-12. PubMed ID: 31897866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hip load capacity cut-points for Astronaut Skeletal Health NASA Finite Element Strength Task Group Recommendations.
    Michalski AS; Amin S; Cheung AM; Cody DD; Keyak JH; Lang TF; Nicolella DP; Orwoll ES; Boyd SK; Sibonga JD
    NPJ Microgravity; 2019; 5():6. PubMed ID: 30886891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spaceflight-Associated Brain White Matter Microstructural Changes and Intracranial Fluid Redistribution.
    Lee JK; Koppelmans V; Riascos RF; Hasan KM; Pasternak O; Mulavara AP; Bloomberg JJ; Seidler RD
    JAMA Neurol; 2019 Apr; 76(4):412-419. PubMed ID: 30673793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trunk Skeletal Muscle Changes on CT with Long-Duration Spaceflight.
    Greene KA; Withers SS; Lenchik L; Tooze JA; Weaver AA
    Ann Biomed Eng; 2021 Apr; 49(4):1257-1266. PubMed ID: 33604800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk of herniated nucleus pulposus among U.S. astronauts.
    Johnston SL; Campbell MR; Scheuring R; Feiveson AH
    Aviat Space Environ Med; 2010 Jun; 81(6):566-74. PubMed ID: 20540448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incidence Rate of Cardiovascular Disease End Points in the National Aeronautics and Space Administration Astronaut Corps.
    Ade CJ; Broxterman RM; Charvat JM; Barstow TJ
    J Am Heart Assoc; 2017 Aug; 6(8):. PubMed ID: 28784652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight.
    Lang T; LeBlanc A; Evans H; Lu Y; Genant H; Yu A
    J Bone Miner Res; 2004 Jun; 19(6):1006-12. PubMed ID: 15125798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.