BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 23564240)

  • 1. Evaluation of the intranasal flow field through computational fluid dynamics.
    Hildebrandt T; Goubergrits L; Heppt WJ; Bessler S; Zachow S
    Facial Plast Surg; 2013 Apr; 29(2):93-8. PubMed ID: 23564240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlations between computational fluid dynamics and clinical evaluation of nasal airway obstruction due to septal deviation: An observational study.
    Radulesco T; Meister L; Bouchet G; Varoquaux A; Giordano J; Mancini J; Dessi P; Perrier P; Michel J
    Clin Otolaryngol; 2019 Jul; 44(4):603-611. PubMed ID: 31004557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4-Phase-Rhinomanometry (4PR)--basics and practice 2010.
    Vogt K; Jalowayski AA; Althaus W; Cao C; Han D; Hasse W; Hoffrichter H; Mösges R; Pallanch J; Shah-Hosseini K; Peksis K; Wernecke KD; Zhang L; Zaporoshenko P
    Rhinol Suppl; 2010; 21():1-50. PubMed ID: 20649107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of septal deviation effects on nasal air flow: a computational fluid dynamics model.
    Chen XB; Lee HP; Chong VF; Wang de Y
    Laryngoscope; 2009 Sep; 119(9):1730-6. PubMed ID: 19572266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Septal deviation and nasal resistance: an investigation using virtual surgery and computational fluid dynamics.
    Garcia GJ; Rhee JS; Senior BA; Kimbell JS
    Am J Rhinol Allergy; 2010; 24(1):e46-53. PubMed ID: 20109325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of computational fluid dynamics nasal airflow measurement to design septoplasty: a pilot study.
    Mahasittiwat V; Hemtiwakorn K; Pintavirooj C
    J Med Assoc Thai; 2013 Jan; 96 Suppl 1():S12-7. PubMed ID: 23724450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The concept of rhinorespiratory homeostasis--a new approach to nasal breathing.
    Hildebrandt T; Heppt WJ; Kertzscher U; Goubergrits L
    Facial Plast Surg; 2013 Apr; 29(2):85-92. PubMed ID: 23564239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics and trigeminal sensory examinations of empty nose syndrome patients.
    Li C; Farag AA; Leach J; Deshpande B; Jacobowitz A; Kim K; Otto BA; Zhao K
    Laryngoscope; 2017 Jun; 127(6):E176-E184. PubMed ID: 28278356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Airway assessment by four-phase rhinomanometry in septal surgery.
    Vogt K; Zhang L
    Curr Opin Otolaryngol Head Neck Surg; 2012 Feb; 20(1):33-9. PubMed ID: 22157163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of the implications of computational fluid dynamic studies on nasal airflow and physiology.
    Leong SC; Chen XB; Lee HP; Wang DY
    Rhinology; 2010 Jun; 48(2):139-45. PubMed ID: 20502749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Nasal Airflow and Resistance: Computational Modeling for Experimental Measurements.
    Kaneda S; Iida M; Yamamoto H; Sekine M; Ebisumoto K; Sakai A; Takakura Y
    Tokai J Exp Clin Med; 2019 Sep; 44(3):59-67. PubMed ID: 31448398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between nasal airflow characteristics and clinical relevance of nasal septal deviation to nasal airway obstruction.
    Kim SK; Heo GE; Seo A; Na Y; Chung SK
    Respir Physiol Neurobiol; 2014 Feb; 192():95-101. PubMed ID: 24361464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between Subjective Nasal Patency and Intranasal Airflow Distribution.
    Casey KP; Borojeni AA; Koenig LJ; Rhee JS; Garcia GJ
    Otolaryngol Head Neck Surg; 2017 Apr; 156(4):741-750. PubMed ID: 28139171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overview of Nasal Airway and Nasal Breathing Evaluation.
    Xavier R
    Facial Plast Surg; 2024 Jun; 40(3):268-274. PubMed ID: 38331036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional relevance of computational fluid dynamics in the field of nasal obstruction: A literature review.
    Radulesco T; Meister L; Bouchet G; Giordano J; Dessi P; Perrier P; Michel J
    Clin Otolaryngol; 2019 Sep; 44(5):801-809. PubMed ID: 31233660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computed nasal resistance compared with patient-reported symptoms in surgically treated nasal airway passages: a preliminary report.
    Kimbell JS; Garcia GJ; Frank DO; Cannon DE; Pawar SS; Rhee JS
    Am J Rhinol Allergy; 2012; 26(3):e94-8. PubMed ID: 22643935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimates of nasal airflow at the nasal cycle mid-point improve the correlation between objective and subjective measures of nasal patency.
    Gaberino C; Rhee JS; Garcia GJ
    Respir Physiol Neurobiol; 2017 Apr; 238():23-32. PubMed ID: 28089607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold.
    Cherobin GB; Voegels RL; Gebrim EMMS; Garcia GJM
    PLoS One; 2018; 13(11):e0207178. PubMed ID: 30444909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agreement between rhinomanometry and computed tomography-based computational fluid dynamics.
    Berger M; Giotakis AI; Pillei M; Mehrle A; Kraxner M; Kral F; Recheis W; Riechelmann H; Freysinger W
    Int J Comput Assist Radiol Surg; 2021 Apr; 16(4):629-638. PubMed ID: 33677758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perception of better nasal patency correlates with increased mucosal cooling after surgery for nasal obstruction.
    Sullivan CD; Garcia GJ; Frank-Ito DO; Kimbell JS; Rhee JS
    Otolaryngol Head Neck Surg; 2014 Jan; 150(1):139-47. PubMed ID: 24154749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.