These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 23564415)
1. Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications. Lock JY; Wyatt E; Upadhyayula S; Whall A; Nuñez V; Vullev VI; Liu H J Biomed Mater Res A; 2014 Mar; 102(3):781-92. PubMed ID: 23564415 [TBL] [Abstract][Full Text] [Related]
2. Antimicrobial properties of biodegradable magnesium for next generation ureteral stent applications. Lock JY; Draganov M; Whall A; Dhillon S; Upadhyayula S; Vullev VI; Liu H Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1378-81. PubMed ID: 23366156 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of a novel biodegradable ureteral stent produced from polyurethane and magnesium alloys. Jin L; Yao L; Yuan F; Dai G; Xue B J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):665-672. PubMed ID: 32929829 [TBL] [Abstract][Full Text] [Related]
4. In vivo assessment of biodegradable magnesium alloy ureteral stents in a pig model. Tie D; Liu H; Guan R; Holt-Torres P; Liu Y; Wang Y; Hort N Acta Biomater; 2020 Oct; 116():415-425. PubMed ID: 32949824 [TBL] [Abstract][Full Text] [Related]
5. Prospects for the research and application of biodegradable ureteral stents: from bench to bedside. Wang L; Yang G; Xie H; Chen F J Biomater Sci Polym Ed; 2018 Oct; 29(14):1657-1666. PubMed ID: 30141744 [TBL] [Abstract][Full Text] [Related]
6. [Development of biodegradable magnesium-based biomaterials]. Zhu S; Xu L; Huang N Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):437-9, 451. PubMed ID: 19499820 [TBL] [Abstract][Full Text] [Related]
7. Responses of human urothelial cells to magnesium-zinc-strontium alloys and associated insoluble degradation products for urological stent applications. Tian Q; Zhang C; Deo M; Rivera-Castaneda L; Masoudipour N; Guan R; Liu H Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():248-262. PubMed ID: 30606530 [TBL] [Abstract][Full Text] [Related]
8. Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents. Mao L; Shen L; Niu J; Zhang J; Ding W; Wu Y; Fan R; Yuan G Nanoscale; 2013 Oct; 5(20):9517-22. PubMed ID: 23989064 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of Mg alloy tubes for biodegradable stent application. Hanada K; Matsuzaki K; Huang X; Chino Y Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4746-50. PubMed ID: 24094183 [TBL] [Abstract][Full Text] [Related]
10. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Xin Y; Hu T; Chu PK Acta Biomater; 2011 Apr; 7(4):1452-9. PubMed ID: 21145436 [TBL] [Abstract][Full Text] [Related]
11. In vitro interactions of blood, platelet, and fibroblast with biodegradable magnesium-zinc-strontium alloys. Nguyen TY; Cipriano AF; Guan RG; Zhao ZY; Liu H J Biomed Mater Res A; 2015 Sep; 103(9):2974-86. PubMed ID: 25690931 [TBL] [Abstract][Full Text] [Related]
12. Surface modifications of magnesium alloys for biomedical applications. Yang J; Cui F; Lee IS Ann Biomed Eng; 2011 Jul; 39(7):1857-71. PubMed ID: 21445692 [TBL] [Abstract][Full Text] [Related]
13. A feasibility study of biodegradable magnesium-aluminum-zinc-calcium-manganese (AZXM) alloys for tracheal stent application. Wu J; Lee B; Saha P; N Kumta P J Biomater Appl; 2019 Mar; 33(8):1080-1093. PubMed ID: 30717611 [TBL] [Abstract][Full Text] [Related]
15. [Corrosive degradation of magnesium and its alloy as endovascular stent]. Chen S; Lu A; Hu X; Yu D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Dec; 28(6):1246-50. PubMed ID: 22295723 [TBL] [Abstract][Full Text] [Related]
16. A novel ureteral stent material with antibacterial and reducing encrustation properties. Zhao J; Cao Z; Ren L; Chen S; Zhang B; Liu R; Yang K Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():221-228. PubMed ID: 27524016 [TBL] [Abstract][Full Text] [Related]
17. In vitro biocompatibility and endothelialization of novel magnesium-rare Earth alloys for improved stent applications. Zhao N; Watson N; Xu Z; Chen Y; Waterman J; Sankar J; Zhu D PLoS One; 2014; 9(6):e98674. PubMed ID: 24921251 [TBL] [Abstract][Full Text] [Related]
18. In vitro cytocompatibility, hemocompatibility and antibacterial properties of biodegradable Zn-Cu-Fe alloys for cardiovascular stents applications. Yue R; Niu J; Li Y; Ke G; Huang H; Pei J; Ding W; Yuan G Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111007. PubMed ID: 32487410 [TBL] [Abstract][Full Text] [Related]
19. Design and validation of a dynamic flow model simulating encrustation of biomaterials in the urinary tract. Gorman SP; Garvin CP; Quigley F; Jones DS J Pharm Pharmacol; 2003 Apr; 55(4):461-8. PubMed ID: 12803767 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. Brar HS; Wong J; Manuel MV J Mech Behav Biomed Mater; 2012 Mar; 7():87-95. PubMed ID: 22340688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]