BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23564434)

  • 21. Two arginine repressors regulate arginine biosynthesis in Lactobacillus plantarum.
    Nicoloff H; Arsène-Ploetze F; Malandain C; Kleerebezem M; Bringel F
    J Bacteriol; 2004 Sep; 186(18):6059-69. PubMed ID: 15342575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A single P115Q mutation modulates specificity in the Corynebacterium pseudotuberculosis arginine repressor.
    Mariutti RB; Hernández-González JE; Nascimento AFZ; de Morais MAB; Murakami MT; Carareto CMA; Arni RK
    Biochim Biophys Acta Gen Subj; 2020 Jul; 1864(7):129597. PubMed ID: 32156582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Production of L-citrulline by a recombinant Corynebacterium crenatum SYPA 5-5 whole-cell biocatalyst].
    Liu Q; Xu M; Zhang R; Wang M; Zhang X; Yang T; Rao Z
    Sheng Wu Gong Cheng Xue Bao; 2017 Nov; 33(11):1889-1894. PubMed ID: 29202526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-level production of the agmatine in engineered Corynebacterium crenatum with the inhibition-releasing arginine decarboxylase.
    Yang F; Xu J; Zhu Y; Wang Y; Xu M; Rao Z
    Microb Cell Fact; 2022 Jan; 21(1):16. PubMed ID: 35101042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Expression of feedback-resistant aspartate kinase gene in Corynebacterium crenatum].
    Zhao Z; Liu YJ; Wang Y; Zhang YZ; Ding JY
    Wei Sheng Wu Xue Bao; 2005 Aug; 45(4):530-3. PubMed ID: 16245864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cloning and characterization of argR, a gene that participates in regulation of arginine biosynthesis and catabolism in Pseudomonas aeruginosa PAO1.
    Park SM; Lu CD; Abdelal AT
    J Bacteriol; 1997 Sep; 179(17):5300-8. PubMed ID: 9286980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reengineering of the feedback-inhibition enzyme N-acetyl-L-glutamate kinase to enhance L-arginine production in Corynebacterium crenatum.
    Zhang J; Xu M; Ge X; Zhang X; Yang T; Xu Z; Rao Z
    J Ind Microbiol Biotechnol; 2017 Feb; 44(2):271-283. PubMed ID: 28005186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of ArgR-DNA binding affinity on ornithine production in Corynebacterium glutamicum.
    Lee SY; Kim YH; Min J
    Curr Microbiol; 2009 Oct; 59(4):483-8. PubMed ID: 19688381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conversion of phenol to glutamate and proline in Corynebacterium glutamicum is regulated by transcriptional regulator ArgR.
    Lee SY; Kim YH; Min J
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):713-20. PubMed ID: 19707750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A superrepressor mutant of the arginine repressor with a correctly predicted alteration of ligand binding specificity.
    Niersbach H; Lin R; Van Duyne GD; Maas WK
    J Mol Biol; 1998 Jun; 279(4):753-60. PubMed ID: 9642058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of the ammonia assimilation for enhancing L-arginine production of Corynebacterium crenatum.
    Guo J; Man Z; Rao Z; Xu M; Yang T; Zhang X; Xu Z
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):443-451. PubMed ID: 28120129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stationary phase expression of the arginine biosynthetic operon argCBH in Escherichia coli.
    Weerasinghe JP; Dong T; Schertzberg MR; Kirchhof MG; Sun Y; Schellhorn HE
    BMC Microbiol; 2006 Feb; 6():14. PubMed ID: 16504055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ArgR directly inhibits lipA transcription in Pseudomonas protegens Pf-5.
    Ying W; Wang XL; Shi HQ; Yan LW; Zhang BH; Li HQ; Yang JY; Zha DM
    Biochimie; 2019 Dec; 167():34-41. PubMed ID: 31491441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Involvement of the arginine repressor in lysine biosynthesis of Thermus thermophilus.
    Fujiwara K; Tsubouchi T; Kuzuyama T; Nishiyama M
    Microbiology (Reading); 2006 Dec; 152(Pt 12):3585-3594. PubMed ID: 17159211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved L-ornithine production in Corynebacterium crenatum by introducing an artificial linear transacetylation pathway.
    Shu Q; Xu M; Li J; Yang T; Zhang X; Xu Z; Rao Z
    J Ind Microbiol Biotechnol; 2018 Jun; 45(6):393-404. PubMed ID: 29728854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system.
    Schneider J; Eberhardt D; Wendisch VF
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):169-78. PubMed ID: 22370950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutational analysis of the arginine repressor of Escherichia coli.
    Tian G; Maas WK
    Mol Microbiol; 1994 Aug; 13(4):599-608. PubMed ID: 7997172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production.
    Man Z; Xu M; Rao Z; Guo J; Yang T; Zhang X; Xu Z
    Sci Rep; 2016 Jun; 6():28629. PubMed ID: 27338253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide comprehensive analysis of transcriptional regulation by ArgR in Thermus thermophilus.
    Iwanaga N; Ide K; Nagashima T; Tomita T; Agari Y; Shinkai A; Kuramitsu S; Okada-Hatakeyema M; Kuzuyama T; Nishiyama M
    Extremophiles; 2014 Nov; 18(6):995-1008. PubMed ID: 25069875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.