These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23564459)

  • 41. Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol.
    Epshtein Y; Chopra AP; Rosenhouse-Dantsker A; Kowalsky GB; Logothetis DE; Levitan I
    Proc Natl Acad Sci U S A; 2009 May; 106(19):8055-60. PubMed ID: 19416905
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dual pattern of cholesterol-induced decoupling of residue-residue interactions of Kir2.2.
    Beverley KM; Barbera N; Levitan I
    J Struct Biol; 2024 Jun; 216(2):108091. PubMed ID: 38641256
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PIP2 binding residues of Kir2.1 are common targets of mutations causing Andersen syndrome.
    Donaldson MR; Jensen JL; Tristani-Firouzi M; Tawil R; Bendahhou S; Suarez WA; Cobo AM; Poza JJ; Behr E; Wagstaff J; Szepetowski P; Pereira S; Mozaffar T; Escolar DM; Fu YH; Ptácek LJ
    Neurology; 2003 Jun; 60(11):1811-6. PubMed ID: 12796536
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cryo-EM analysis of PIP
    Niu Y; Tao X; Touhara KK; MacKinnon R
    Elife; 2020 Aug; 9():. PubMed ID: 32844743
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nucleotides and phospholipids compete for binding to the C terminus of KATP channels.
    MacGregor GG; Dong K; Vanoye CG; Tang L; Giebisch G; Hebert SC
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2726-31. PubMed ID: 11880626
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Secondary anionic phospholipid binding site and gating mechanism in Kir2.1 inward rectifier channels.
    Lee SJ; Wang S; Borschel W; Heyman S; Gyore J; Nichols CG
    Nat Commun; 2013; 4():2786. PubMed ID: 24270915
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Control of Kir channel gating by cytoplasmic domain interface interactions.
    Borschel WF; Wang S; Lee S; Nichols CG
    J Gen Physiol; 2017 May; 149(5):561-576. PubMed ID: 28389584
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of a cholesterol-binding pocket in inward rectifier K(+) (Kir) channels.
    Fürst O; Nichols CG; Lamoureux G; D'Avanzo N
    Biophys J; 2014 Dec; 107(12):2786-2796. PubMed ID: 25517146
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A carboxy-terminal inter-helix linker as the site of phosphatidylinositol 4,5-bisphosphate action on Kv7 (M-type) K+ channels.
    Hernandez CC; Zaika O; Shapiro MS
    J Gen Physiol; 2008 Sep; 132(3):361-81. PubMed ID: 18725531
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular characteristics of phosphoinositide binding.
    Rosenhouse-Dantsker A; Logothetis DE
    Pflugers Arch; 2007 Oct; 455(1):45-53. PubMed ID: 17588168
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of cardiac inwardly rectifying potassium channels by membrane lipid metabolism.
    Takano M; Kuratomi S
    Prog Biophys Mol Biol; 2003 Jan; 81(1):67-79. PubMed ID: 12475570
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational and functional analyses of a small-molecule binding site in ROMK.
    Swale DR; Sheehan JH; Banerjee S; Husni AS; Nguyen TT; Meiler J; Denton JS
    Biophys J; 2015 Mar; 108(5):1094-103. PubMed ID: 25762321
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The molecular mechanism by which PIP(2) opens the intracellular G-loop gate of a Kir3.1 channel.
    Meng XY; Zhang HX; Logothetis DE; Cui M
    Biophys J; 2012 May; 102(9):2049-59. PubMed ID: 22824268
    [TBL] [Abstract][Full Text] [Related]  

  • 54. N-terminal transmembrane domain of SUR1 controls gating of Kir6.2 by modulating channel sensitivity to PIP2.
    Pratt EB; Tewson P; Bruederle CE; Skach WR; Shyng SL
    J Gen Physiol; 2011 Mar; 137(3):299-314. PubMed ID: 21321069
    [TBL] [Abstract][Full Text] [Related]  

  • 55. How highly charged anionic lipids bind and regulate ion channels.
    Tucker SJ; Baukrowitz T
    J Gen Physiol; 2008 May; 131(5):431-8. PubMed ID: 18411329
    [No Abstract]   [Full Text] [Related]  

  • 56. Phosphoinositide sensitivity of ion channels, a functional perspective.
    Gamper N; Rohacs T
    Subcell Biochem; 2012; 59():289-333. PubMed ID: 22374095
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PIP-on-a-chip: A Label-free Study of Protein-phosphoinositide Interactions.
    Shengjuler D; Sun S; Cremer PS; Cameron CE
    J Vis Exp; 2017 Jul; (125):. PubMed ID: 28784961
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computational Prediction of Phosphoinositide Binding to Hyperpolarization-Activated Cyclic-Nucleotide Gated Channels.
    Claveras Cabezudo A; Feriel Khoualdi A; D'Avanzo N
    Front Physiol; 2022; 13():859087. PubMed ID: 35399260
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular determinants of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) binding to transient receptor potential V1 (TRPV1) channels.
    Poblete H; Oyarzún I; Olivero P; Comer J; Zuñiga M; Sepulveda RV; Báez-Nieto D; González Leon C; González-Nilo F; Latorre R
    J Biol Chem; 2015 Jan; 290(4):2086-98. PubMed ID: 25425643
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Correlation between structure and function in phosphatidylinositol lipid-dependent Kir2.2 gating.
    Zhang Y; Tao X; MacKinnon R
    Proc Natl Acad Sci U S A; 2022 Mar; 119(12):e2114046119. PubMed ID: 35286194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.