These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 23564791)
1. The impact of angio-associated migratory cell protein (AAMP) on breast cancer cells in vitro and its clinical significance. Yin Y; Sanders AJ; Jiang WG Anticancer Res; 2013 Apr; 33(4):1499-509. PubMed ID: 23564791 [TBL] [Abstract][Full Text] [Related]
2. The mRNA expression of inhibitors of DNA binding-1 and -2 is associated with advanced tumour stage and adverse clinical outcome in human breast cancer. Wazir U; Jiang WG; Sharma AK; Newbold RF; Mokbel K Anticancer Res; 2013 May; 33(5):2179-83. PubMed ID: 23645773 [TBL] [Abstract][Full Text] [Related]
3. Negligible nuclear FOXP3 expression in breast cancer epithelial cells compared with FOXP3-positive T cells. Droeser RA; Obermann EC; Wolf AM; Wallner S; Wolf D; Tzankov A Clin Breast Cancer; 2013 Aug; 13(4):264-70. PubMed ID: 23829892 [TBL] [Abstract][Full Text] [Related]
4. Prognostic value of the human antigen R (HuR) in human breast cancer: high level predicts a favourable prognosis. Yuan Z; Sanders AJ; Ye L; Wang Y; Jiang WG Anticancer Res; 2011 Jan; 31(1):303-10. PubMed ID: 21273615 [TBL] [Abstract][Full Text] [Related]
5. Expression of transcription factor CREB1 in human breast cancer and its correlation with prognosis. Chhabra A; Fernando H; Watkins G; Mansel RE; Jiang WG Oncol Rep; 2007 Oct; 18(4):953-8. PubMed ID: 17786359 [TBL] [Abstract][Full Text] [Related]
6. High survivin mRNA expression is a predictor of poor prognosis in breast cancer: a comparative study at the mRNA and protein level. Xu C; Yamamoto-Ibusuki M; Yamamoto Y; Yamamoto S; Fujiwara S; Murakami K; Okumura Y; Yamaguchi L; Fujiki Y; Iwase H Breast Cancer; 2014 Jul; 21(4):482-90. PubMed ID: 22968628 [TBL] [Abstract][Full Text] [Related]
7. Expression of periostin in human breast cancer. Puglisi F; Puppin C; Pegolo E; Andreetta C; Pascoletti G; D'Aurizio F; Pandolfi M; Fasola G; Piga A; Damante G; Di Loreto C J Clin Pathol; 2008 Apr; 61(4):494-8. PubMed ID: 17938160 [TBL] [Abstract][Full Text] [Related]
8. Changes in tenascin-C isoform expression in invasive and preinvasive breast disease. Adams M; Jones JL; Walker RA; Pringle JH; Bell SC Cancer Res; 2002 Jun; 62(11):3289-97. PubMed ID: 12036947 [TBL] [Abstract][Full Text] [Related]
9. Expression of breast cancer metastasis suppressor-1, BRMS-1, in human breast cancer and the biological impact of BRMS-1 on the migration of breast cancer cells. Zhang Y; Ye L; Tan Y; Sun P; Ji K; Jiang WG Anticancer Res; 2014 Mar; 34(3):1417-26. PubMed ID: 24596389 [TBL] [Abstract][Full Text] [Related]
10. The expression of the von Hippel-Lindau gene product and its impact on invasiveness of human breast cancer cells. Zia MK; Rmali KA; Watkins G; Mansel RE; Jiang WG Int J Mol Med; 2007 Oct; 20(4):605-11. PubMed ID: 17786294 [TBL] [Abstract][Full Text] [Related]
11. Reduction of breast cancer cell migration via up-regulation of TASK-3 two-pore domain K+ channel. Lee GW; Park HS; Kim EJ; Cho YW; Kim GT; Mun YJ; Choi EJ; Lee JS; Han J; Kang D Acta Physiol (Oxf); 2012 Apr; 204(4):513-24. PubMed ID: 21910834 [TBL] [Abstract][Full Text] [Related]
12. The urokinase-system in tumor tissue stroma of the breast and breast cancer cell invasion. Hildenbrand R; Schaaf A Int J Oncol; 2009 Jan; 34(1):15-23. PubMed ID: 19082473 [TBL] [Abstract][Full Text] [Related]
13. A novel tumor suppressor gene RhoBTB2 (DBC2): frequent loss of expression in sporadic breast cancer. Mao H; Qu X; Yang Y; Zuo W; Bi Y; Zhou C; Yin H; Deng B; Sun J; Zhang L Mol Carcinog; 2010 Mar; 49(3):283-9. PubMed ID: 19937980 [TBL] [Abstract][Full Text] [Related]
14. Breast cancer-associated fibroblasts induce epithelial-to-mesenchymal transition in breast cancer cells. Soon PS; Kim E; Pon CK; Gill AJ; Moore K; Spillane AJ; Benn DE; Baxter RC Endocr Relat Cancer; 2013 Feb; 20(1):1-12. PubMed ID: 23111755 [TBL] [Abstract][Full Text] [Related]
15. Ras suppressor-1 promotes apoptosis in breast cancer cells by inhibiting PINCH-1 and activating p53-upregulated-modulator of apoptosis (PUMA); verification from metastatic breast cancer human samples. Giotopoulou N; Valiakou V; Papanikolaou V; Dubos S; Athanassiou E; Tsezou A; Zacharia LC; Gkretsi V Clin Exp Metastasis; 2015 Mar; 32(3):255-65. PubMed ID: 25647720 [TBL] [Abstract][Full Text] [Related]
16. Clinical implications of the influence of Ehm2 on the aggressiveness of breast cancer cells through regulation of matrix metalloproteinase-9 expression. Yu H; Ye L; Mansel RE; Zhang Y; Jiang WG Mol Cancer Res; 2010 Nov; 8(11):1501-12. PubMed ID: 21047774 [TBL] [Abstract][Full Text] [Related]
17. Tumor-suppressive microRNA-34a inhibits breast cancer cell migration and invasion via targeting oncogenic TPD52. Li G; Yao L; Zhang J; Li X; Dang S; Zeng K; Zhou Y; Gao F Tumour Biol; 2016 Jun; 37(6):7481-91. PubMed ID: 26678891 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of caveolin-1 and -2 in cell lines and in human samples of inflammatory breast cancer. Van den Eynden GG; Van Laere SJ; Van der Auwera I; Merajver SD; Van Marck EA; van Dam P; Vermeulen PB; Dirix LY; van Golen KL Breast Cancer Res Treat; 2006 Feb; 95(3):219-28. PubMed ID: 16244790 [TBL] [Abstract][Full Text] [Related]
19. Genetic manipulation of stromal cell-derived factor-1 attests the pivotal role of the autocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells. Kang H; Mansel RE; Jiang WG Int J Oncol; 2005 May; 26(5):1429-34. PubMed ID: 15809737 [TBL] [Abstract][Full Text] [Related]
20. Cyclooxygenase-2 expression in human breast cancers and adjacent ductal carcinoma in situ. Half E; Tang XM; Gwyn K; Sahin A; Wathen K; Sinicrope FA Cancer Res; 2002 Mar; 62(6):1676-81. PubMed ID: 11912139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]