These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 23564845)

  • 1. Network predicting drug's anatomical therapeutic chemical code.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2013 May; 29(10):1317-24. PubMed ID: 23564845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of drug's Anatomical Therapeutic Chemical (ATC) code by integrating drug-domain network.
    Chen FS; Jiang ZR
    J Biomed Inform; 2015 Dec; 58():80-88. PubMed ID: 26434987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Study of Drugs by Integrating Omics Data with Kernel Methods.
    Wang YC; Deng N; Chen S; Wang Y
    Mol Inform; 2013 Dec; 32(11-12):930-41. PubMed ID: 27481139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug repositioning by prediction of drug's anatomical therapeutic chemical code via network-based inference approaches.
    Peng Y; Wang M; Xu Y; Wu Z; Wang J; Zhang C; Liu G; Li W; Li J; Tang Y
    Brief Bioinform; 2021 Mar; 22(2):2058-2072. PubMed ID: 32221552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Similarity-based prediction for Anatomical Therapeutic Chemical classification of drugs by integrating multiple data sources.
    Liu Z; Guo F; Gu J; Wang Y; Li Y; Wang D; Lu L; Li D; He F
    Bioinformatics; 2015 Jun; 31(11):1788-95. PubMed ID: 25638810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PDATC-NCPMKL: Predicting drug's Anatomical Therapeutic Chemical (ATC) codes based on network consistency projection and multiple kernel learning.
    Chen L; Xu J; Zhou Y
    Comput Biol Med; 2024 Feb; 169():107862. PubMed ID: 38150886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kernel-based data fusion improves the drug-protein interaction prediction.
    Wang YC; Zhang CH; Deng NY; Wang Y
    Comput Biol Chem; 2011 Dec; 35(6):353-62. PubMed ID: 22099632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting anatomic therapeutic chemical classification codes using tiered learning.
    Olson T; Singh R
    BMC Bioinformatics; 2017 Jun; 18(Suppl 8):266. PubMed ID: 28617230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNPredATC: A Deep Residual Learning-Based Model With Applications to the Prediction of Drug-ATC Code Association.
    Zhao H; Duan G; Ni P; Yan C; Li Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):2712-2723. PubMed ID: 34110998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug repositioning by applying 'expression profiles' generated by integrating chemical structure similarity and gene semantic similarity.
    Tan F; Yang R; Xu X; Chen X; Wang Y; Ma H; Liu X; Wu X; Chen Y; Liu L; Jia X
    Mol Biosyst; 2014 May; 10(5):1126-38. PubMed ID: 24603772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization.
    Gönen M
    Bioinformatics; 2012 Sep; 28(18):2304-10. PubMed ID: 22730431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DrugE-Rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank.
    Yuan Q; Gao J; Wu D; Zhang S; Mamitsuka H; Zhu S
    Bioinformatics; 2016 Jun; 32(12):i18-i27. PubMed ID: 27307615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convolutional Neural Networks for ATC Classification.
    Lumini A; Nanni L
    Curr Pharm Des; 2018; 24(34):4007-4012. PubMed ID: 30417778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaussian interaction profile kernels for predicting drug-target interaction.
    van Laarhoven T; Nabuurs SB; Marchiori E
    Bioinformatics; 2011 Nov; 27(21):3036-43. PubMed ID: 21893517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-step similarity-based method for prediction of drug's target group.
    Chen L; Zeng WM
    Protein Pept Lett; 2013 Mar; 20(3):364-70. PubMed ID: 23570053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relating anatomical therapeutic indications by the ensemble similarity of drug sets.
    Wu L; Ai N; Liu Y; Wang Y; Fan X
    J Chem Inf Model; 2013 Aug; 53(8):2154-60. PubMed ID: 23889502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid method for prediction and repositioning of drug Anatomical Therapeutic Chemical classes.
    Chen L; Lu J; Zhang N; Huang T; Cai YD
    Mol Biosyst; 2014 Apr; 10(4):868-77. PubMed ID: 24492783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DACPGTN: Drug ATC Code Prediction Method Based on Graph Transformer Network for Drug Discovery.
    Yan C; Suo Z; Wang J; Zhang G; Luo H
    Front Pharmacol; 2022; 13():907676. PubMed ID: 35721178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug Repositioning by Integrating Known Disease-Gene and Drug-Target Associations in a Semi-supervised Learning Model.
    Le DH; Nguyen-Ngoc D
    Acta Biotheor; 2018 Dec; 66(4):315-331. PubMed ID: 29700660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.