BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23565318)

  • 1. Development of Photocrosslinkable Urethane-Doped Polyester Elastomers for Soft Tissue Engineering.
    Zhang Y; Tran RT; Gyawali D; Yang J
    Int J Biomater Res Eng; 2011 Jan; 1(1):18-31. PubMed ID: 23565318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of a biodegradable elastomer featuring a dual crosslinking mechanism.
    Tran RT; Thevenot P; Gyawali D; Chiao JC; Tang L; Yang J
    Soft Matter; 2010 Jan; 6(11):2449-2461. PubMed ID: 22162975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of biodegradable crosslinked urethane-doped polyester elastomers.
    Dey J; Xu H; Shen J; Thevenot P; Gondi SR; Nguyen KT; Sumerlin BS; Tang L; Yang J
    Biomaterials; 2008 Dec; 29(35):4637-49. PubMed ID: 18801566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Citric-acid-derived photo-cross-linked biodegradable elastomers.
    Gyawali D; Tran RT; Guleserian KJ; Tang L; Yang J
    J Biomater Sci Polym Ed; 2010; 21(13):1761-82. PubMed ID: 20557687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and long-term in vivo evaluation of a biodegradable urethane-doped polyester elastomer.
    Dey J; Tran RT; Shen J; Tang L; Yang J
    Macromol Mater Eng; 2011 Dec; 296(12):1149-1157. PubMed ID: 22184499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers.
    Wang Z; Ma Y; Wang Y; Liu Y; Chen K; Wu Z; Yu S; Yuan Y; Liu C
    Acta Biomater; 2018 Apr; 71():279-292. PubMed ID: 29549052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers.
    Su LC; Xie Z; Zhang Y; Nguyen KT; Yang J
    Front Bioeng Biotechnol; 2014; 2():23. PubMed ID: 25023605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Elastic and Moldable Polyester Biomaterial for Cardiac Tissue Engineering Applications.
    Davenport Huyer L; Zhang B; Korolj A; Montgomery M; Drecun S; Conant G; Zhao Y; Reis L; Radisic M
    ACS Biomater Sci Eng; 2016 May; 2(5):780-788. PubMed ID: 33440575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization & cytocompatibility of poly (diol-co-tricarballylate) based thermally crosslinked elastomers for drug delivery & tissue engineering applications.
    Hassouna YM; Zamani S; Kafienah W; Younes HM
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():254-264. PubMed ID: 30274057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for the Fabrication of Elastomeric Polyester Scaffolds for Tissue Engineering and Minimally Invasive Delivery.
    Montgomery M; Davenport Huyer L; Bannerman D; Mohammadi MH; Conant G; Radisic M
    ACS Biomater Sci Eng; 2018 Nov; 4(11):3691-3703. PubMed ID: 33429599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering.
    Mi HY; Jing X; Napiwocki BN; Hagerty BS; Chen G; Turng LS
    J Mater Chem B; 2017 Jun; 5(22):4137-4151. PubMed ID: 29170715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence imaging enabled urethane-doped citrate-based biodegradable elastomers.
    Zhang Y; Tran RT; Qattan IS; Tsai YT; Tang L; Liu C; Yang J
    Biomaterials; 2013 May; 34(16):4048-4056. PubMed ID: 23465824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers.
    Yang J; Webb AR; Pickerill SJ; Hageman G; Ameer GA
    Biomaterials; 2006 Mar; 27(9):1889-98. PubMed ID: 16290904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eco-Friendly Ether and Ester-Urethane Prepolymer: Structure, Processing and Properties.
    Niesiobędzka J; Głowińska E; Datta J
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable poly(ethylene glycol-glycerol-itaconate-sebacate) copolyester elastomer with significantly reinforced mechanical properties by in-situ construction of bacterial cellulose interpenetrating network.
    Tang L; Jin Y; He X; Huang R
    Sci Rep; 2024 Mar; 14(1):7172. PubMed ID: 38531891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds.
    Hong Y; Guan J; Fujimoto KL; Hashizume R; Pelinescu AL; Wagner WR
    Biomaterials; 2010 May; 31(15):4249-58. PubMed ID: 20188411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Healing Polyester Urethane Supramolecular Elastomers Reinforced with Cellulose Nanocrystals for Biomedical Applications.
    Zeimaran E; Pourshahrestani S; Kadri NA; Kong D; Shirazi SFS; Naveen SV; Murugan SS; Kumaravel TS; Salamatinia B
    Macromol Biosci; 2019 Oct; 19(10):e1900176. PubMed ID: 31441595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold.
    Zhu L; Zhang Y; Ji Y
    J Mater Sci Mater Med; 2017 Jun; 28(6):93. PubMed ID: 28510114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Poly(1,8-octanediol-
    Yu L; He W; Peters EB; Ledford BT; Tsihlis ND; Kibbe MR
    ACS Appl Bio Mater; 2020 Apr; 3(4):2150-2159. PubMed ID: 35025266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.