These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23565682)

  • 21. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone).
    Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH
    Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PLGA-(L-Asp-alt-diol)(x)-PLGAs with different contents of pendant amino groups: synthesis and characterization.
    Zhao J; Quan D; Liao K; Wu Q
    Macromol Biosci; 2005 Jul; 5(7):636-43. PubMed ID: 15991217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, characterization and in vitro degradation of a biodegradable elastomer.
    Younes HM; Bravo-Grimaldo E; Amsden BG
    Biomaterials; 2004 Oct; 25(22):5261-9. PubMed ID: 15110477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro hydrolytic and enzymatic degradation of nestlike-patterned electrospun poly(D,L-lactide-co-glycolide) scaffolds.
    Zhou X; Cai Q; Yan N; Deng X; Yang X
    J Biomed Mater Res A; 2010 Dec; 95(3):755-65. PubMed ID: 20725988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Route to Aliphatic Poly(ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds.
    Fuoco T; Finne-Wistrand A; Pappalardo D
    Biomacromolecules; 2016 Apr; 17(4):1383-94. PubMed ID: 26915640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elastomeric hydrolyzable porous scaffolds: copolymers of aliphatic polyesters and a polyether-ester.
    Odelius K; Plikk P; Albertsson AC
    Biomacromolecules; 2005; 6(5):2718-25. PubMed ID: 16153111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of morphology and mechanical properties of PLGA bioscaffolds.
    Leung L; Chan C; Baek S; Naguib H
    Biomed Mater; 2008 Jun; 3(2):025006. PubMed ID: 18458364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Material properties and bone marrow stromal cells response to in situ crosslinkable RGD-functionlized lactide-co-glycolide scaffolds.
    Jabbari E; He X; Valarmathi MT; Sarvestani AS; Xu W
    J Biomed Mater Res A; 2009 Apr; 89(1):124-37. PubMed ID: 18431754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and characterization of glycolide, L-lactide, and PDMS-based terpolymers as a support for cell cultures.
    Porjazoska A; Kayaman-Apohan N; Karal-Yilmaz O; Cvetkovska M; Baysal K; Baysal BM
    J Biomater Sci Polym Ed; 2002; 13(10):1119-34. PubMed ID: 12484488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shape-memory effect by specific biodegradable polymer blending for biomedical applications.
    Cha KJ; Lih E; Choi J; Joung YK; Ahn DJ; Han DK
    Macromol Biosci; 2014 May; 14(5):667-78. PubMed ID: 24446274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of macroporous biodegradable poly(L-lactide-co-epsilon-caprolactone) foams and characterization by mercury intrusion porosimetry, image analysis, and impedance spectroscopy.
    Maquet V; Blacher S; Pirard R; Pirard JP; Vyakarnam MN; Jérôme R
    J Biomed Mater Res A; 2003 Aug; 66(2):199-213. PubMed ID: 12888989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface eroding, liquid injectable polymers based on 5-ethylene ketal ε-caprolactone.
    Babasola OI; Amsden BG
    Biomacromolecules; 2011 Oct; 12(10):3423-31. PubMed ID: 21902176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers.
    Fernández J; Etxeberria A; Sarasua JR
    J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of poly(L-lactic acid-co-ethylene oxide-co-aspartic acid) and its interaction with cells.
    Karal-Yilmaz O; Kayaman-Apohan N; Misirli Z; Baysal K; Baysal BM
    J Mater Sci Mater Med; 2006 Mar; 17(3):213-27. PubMed ID: 16555113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copolymerization of D,L-lactide and glycolide in supercritical carbon dioxide with zinc octoate as catalyst.
    Mazarro R; de Lucas A; Gracia I; Rodríguez JF
    J Biomed Mater Res B Appl Biomater; 2008 Apr; 85(1):196-203. PubMed ID: 17854066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic degradation of poly(L-lactide) and poly(epsilon-caprolactone) electrospun fibers.
    Zeng J; Chen X; Liang Q; Xu X; Jing X
    Macromol Biosci; 2004 Dec; 4(12):1118-25. PubMed ID: 15586389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solvent effects on the microstructure and properties of 75/25 poly(D,L-lactide-co-glycolide) tissue scaffolds.
    Sander EA; Alb AM; Nauman EA; Reed WF; Dee KC
    J Biomed Mater Res A; 2004 Sep; 70(3):506-13. PubMed ID: 15293325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of monomer order on the hydrolysis of biodegradable poly(lactic-co-glycolic acid) repeating sequence copolymers.
    Li J; Rothstein SN; Little SR; Edenborn HM; Meyer TY
    J Am Chem Soc; 2012 Oct; 134(39):16352-9. PubMed ID: 22950719
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: I. Synthesis and characterization.
    Wang N; Wu XS; Li C; Feng MF
    J Biomater Sci Polym Ed; 2000; 11(3):301-18. PubMed ID: 10841281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.