These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23565806)

  • 21. Surface chemistry of gold nanoparticles determines interactions with bovine serum albumin.
    Wang G; Yan C; Gao S; Liu Y
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109856. PubMed ID: 31349396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gold nanoparticles with different amino acid surfaces: serum albumin adsorption, intracellular uptake and cytotoxicity.
    Cai H; Yao P
    Colloids Surf B Biointerfaces; 2014 Nov; 123():900-6. PubMed ID: 25466455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoparticle-protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces.
    Boulos SP; Davis TA; Yang JA; Lohse SE; Alkilany AM; Holland LA; Murphy CJ
    Langmuir; 2013 Dec; 29(48):14984-96. PubMed ID: 24215427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption of bovine serum albumin on gold nanoprisms: interaction and effect of NIR irradiation on protein corona.
    Bolaños K; Celis F; Garrido C; Campos M; Guzmán F; Kogan MJ; Araya E
    J Mater Chem B; 2020 Sep; 8(37):8644-8657. PubMed ID: 32842142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SiO2@Au core-shell nanospheres self-assemble to form colloidal crystals that can be sintered and surface modified to produce pH-controlled membranes.
    Ignacio-de Leon PA; Zharov I
    Langmuir; 2013 Mar; 29(11):3749-56. PubMed ID: 23398311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of protein characteristics in the formation and fluorescence of Au nanoclusters.
    Xu Y; Sherwood J; Qin Y; Crowley D; Bonizzoni M; Bao Y
    Nanoscale; 2014; 6(3):1515-24. PubMed ID: 24322720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of gold nanoparticles coated with plasma components on ADP-induced platelet aggregation.
    Aseychev AV; Azizova OA; Beckman EM; Dudnik LB; Sergienko VI
    Bull Exp Biol Med; 2013 Sep; 155(5):685-8. PubMed ID: 24288740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biointeractions of ultrasmall glutathione-coated gold nanoparticles: effect of small size variations.
    Sousa AA; Hassan SA; Knittel LL; Balbo A; Aronova MA; Brown PH; Schuck P; Leapman RD
    Nanoscale; 2016 Mar; 8(12):6577-88. PubMed ID: 26934984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amino acid-based anti-fouling functionalization of silica nanoparticles using divinyl sulfone.
    Wang H; Cheng F; Shen W; Cheng G; Zhao J; Peng W; Qu J
    Acta Biomater; 2016 Aug; 40():273-281. PubMed ID: 27032480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy.
    Chen H; Li S; Li B; Ren X; Li S; Mahounga DM; Cui S; Gu Y; Achilefu S
    Nanoscale; 2012 Sep; 4(19):6050-64. PubMed ID: 22930451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant.
    Cho EC; Xie J; Wurm PA; Xia Y
    Nano Lett; 2009 Mar; 9(3):1080-4. PubMed ID: 19199477
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural zwitterionic organosulfurs as surface ligands for antifouling and responsive properties.
    Huang CJ; Wang LC; Liu CY; Chiang AS; Chang YC
    Biointerphases; 2014 Jun; 9(2):029010. PubMed ID: 24985214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of proteins on gold nanoparticles: One or more layers?
    Sotnikov DV; Berlina AN; Ivanov VS; Zherdev AV; Dzantiev BB
    Colloids Surf B Biointerfaces; 2019 Jan; 173():557-563. PubMed ID: 30347382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of the Ligand Binding Strength on the Morphology of Functionalized Gold Nanoparticles.
    Chan CH; Poignant F; Beuve M; Dumont E; Loffreda D
    J Phys Chem Lett; 2020 Apr; 11(7):2717-2723. PubMed ID: 32146808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-Pot Synthesis of a Zwitterionic Small Molecule Bearing Disulfide Moiety for Antibiofouling Macro- and Nanoscale Gold Surfaces.
    Yi S; Lee WK; Park JH; Lee JS; Seo JH
    Langmuir; 2019 Feb; 35(5):1768-1777. PubMed ID: 30103611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Nanoparticle Curvature on Its Interaction with Serum Proteins.
    Yin YW; Ma YQ; Ding HM
    Langmuir; 2024 Jul; 40(29):15205-15213. PubMed ID: 38990344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein-gold nanoclusters for identification of amino acids by metal ions modulated ratiometric fluorescence.
    Wang M; Mei Q; Zhang K; Zhang Z
    Analyst; 2012 Apr; 137(7):1618-23. PubMed ID: 22358336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of gold nanosphere surface chemistry on protein adsorption and cell uptake in vitro.
    Mukhopadhyay A; Grabinski C; Afrooz AR; Saleh NB; Hussain S
    Appl Biochem Biotechnol; 2012 May; 167(2):327-37. PubMed ID: 22547299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing the interaction of oppositely charged gold nanoparticles with DPPG and DPPC Langmuir monolayers as cell membrane models.
    Torrano AA; Pereira ÂS; Oliveira ON; Barros-Timmons A
    Colloids Surf B Biointerfaces; 2013 Aug; 108():120-6. PubMed ID: 23528608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of nanoparticle size on the pH-dependent structure of adsorbed proteins studied with quantitative localized surface plasmon spectroscopy.
    Teichroeb JH; McVeigh PZ; Forrest JA
    Eur Phys J E Soft Matter; 2009 Oct; 30(2):157-64. PubMed ID: 19267244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.