BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23566217)

  • 1. Clustering evolving proteins into homologous families.
    Chan CX; Mahbob M; Ragan MA
    BMC Bioinformatics; 2013 Apr; 14():120. PubMed ID: 23566217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of BLAST-based edge-weighting metrics used for homology inference with the Markov Clustering algorithm.
    Gibbons TR; Mount SM; Cooper ED; Delwiche CF
    BMC Bioinformatics; 2015 Jul; 16():218. PubMed ID: 26160651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MACHOS: Markov clusters of homologous subsequences.
    Wong S; Ragan MA
    Bioinformatics; 2008 Jul; 24(13):i77-85. PubMed ID: 18586748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation and improvements of clustering algorithms for detecting remote homologous protein families.
    Bernardes JS; Vieira FR; Costa LM; Zaverucha G
    BMC Bioinformatics; 2015 Feb; 16():34. PubMed ID: 25651949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid clustering approach to recognition of protein families in 114 microbial genomes.
    Harlow TJ; Gogarten JP; Ragan MA
    BMC Bioinformatics; 2004 Apr; 5():45. PubMed ID: 15115543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNACLUST: accurate and efficient clustering of phylogenetic marker genes.
    Ghodsi M; Liu B; Pop M
    BMC Bioinformatics; 2011 Jun; 12():271. PubMed ID: 21718538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the quality of tree-based protein classification.
    Lazareva-Ulitsky B; Diemer K; Thomas PD
    Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Graph-Based Approach for Detecting Sequence Homology in Highly Diverged Repeat Protein Families.
    Wells JN; Marsh JA
    Methods Mol Biol; 2019; 1851():251-261. PubMed ID: 30298401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super paramagnetic clustering of protein sequences.
    Tetko IV; Facius A; Ruepp A; Mewes HW
    BMC Bioinformatics; 2005 Apr; 6():82. PubMed ID: 15804359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Euclidian space and grouping of biological objects.
    Grishin VN; Grishin NV
    Bioinformatics; 2002 Nov; 18(11):1523-34. PubMed ID: 12424125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs.
    Vlasblom J; Wodak SJ
    BMC Bioinformatics; 2009 Mar; 10():99. PubMed ID: 19331680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast hierarchical clustering algorithm for large-scale protein sequence data sets.
    Szilágyi SM; Szilágyi L
    Comput Biol Med; 2014 May; 48():94-101. PubMed ID: 24657908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ProClust: improved clustering of protein sequences with an extended graph-based approach.
    Pipenbacher P; Schliep A; Schneckener S; Schönhuth A; Schomburg D; Schrader R
    Bioinformatics; 2002; 18 Suppl 2():S182-91. PubMed ID: 12386002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EdClust: A heuristic sequence clustering method with higher sensitivity.
    Cao M; Peng Q; Wei ZG; Liu F; Hou YF
    J Bioinform Comput Biol; 2022 Feb; 20(1):2150036. PubMed ID: 34939905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property.
    Zhong W; Altun G; Harrison R; Tai PC; Pan Y
    IEEE Trans Nanobioscience; 2005 Sep; 4(3):255-65. PubMed ID: 16220690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sifting through genomes with iterative-sequence clustering produces a large, phylogenetically diverse protein-family resource.
    Sharpton TJ; Jospin G; Wu D; Langille MG; Pollard KS; Eisen JA
    BMC Bioinformatics; 2012 Oct; 13():264. PubMed ID: 23061897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions.
    Mistry J; Finn RD; Eddy SR; Bateman A; Punta M
    Nucleic Acids Res; 2013 Jul; 41(12):e121. PubMed ID: 23598997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A grammar-based distance metric enables fast and accurate clustering of large sets of 16S sequences.
    Russell DJ; Way SF; Benson AK; Sayood K
    BMC Bioinformatics; 2010 Dec; 11():601. PubMed ID: 21167044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MeShClust v3.0: high-quality clustering of DNA sequences using the mean shift algorithm and alignment-free identity scores.
    Girgis HZ
    BMC Genomics; 2022 Jun; 23(1):423. PubMed ID: 35668366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing remote protein homology with sequence similarity and a modularity-based approach.
    Mei J; Yang X; Zhou W
    Theor Biol Forum; 2011; 104(1):57-68. PubMed ID: 22220355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.