BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23566299)

  • 21. Analgesic α-conotoxins Vc1.1 and RgIA inhibit N-type calcium channels in sensory neurons of α9 nicotinic receptor knockout mice.
    Callaghan B; Adams DJ
    Channels (Austin); 2010; 4(1):51-4. PubMed ID: 20368690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrathecal α-conotoxins Vc1.1, AuIB and MII acting on distinct nicotinic receptor subtypes reverse signs of neuropathic pain.
    Napier IA; Klimis H; Rycroft BK; Jin AH; Alewood PF; Motin L; Adams DJ; Christie MJ
    Neuropharmacology; 2012 Jun; 62(7):2202-7. PubMed ID: 22306793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determinants of alpha-conotoxin BuIA selectivity on the nicotinic acetylcholine receptor beta subunit.
    Shiembob DL; Roberts RL; Luetje CW; McIntosh JM
    Biochemistry; 2006 Sep; 45(37):11200-7. PubMed ID: 16964981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Critical residue properties for potency and selectivity of α-Conotoxin RgIA towards α9α10 nicotinic acetylcholine receptors.
    Huynh PN; Harvey PJ; Gajewiak J; Craik DJ; Michael McIntosh J
    Biochem Pharmacol; 2020 Nov; 181():114124. PubMed ID: 32593612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-Activity Relationships of Alanine Scan Mutants αO-Conotoxins GeXIVA[1,2] and GeXIVA[1,4].
    Xu P; Zhang P; Zhu X; Wu Y; Harvey PJ; Kaas Q; Zhangsun D; Craik DJ; Luo S
    J Med Chem; 2023 Jul; 66(14):10092-10107. PubMed ID: 37464764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Blockade of neuronal α7-nAChR by α-conotoxin ImI explained by computational scanning and energy calculations.
    Yu R; Craik DJ; Kaas Q
    PLoS Comput Biol; 2011 Mar; 7(3):e1002011. PubMed ID: 21390272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of α9α10 Nicotinic Receptors With Peptides and Proteins From Animal Venoms.
    Tsetlin V; Haufe Y; Safronova V; Serov D; Shadamarshan P; Son L; Shelukhina I; Kudryavtsev D; Kryukova E; Kasheverov I; Nicke A; Utkin Y
    Front Cell Neurosci; 2021; 15():765541. PubMed ID: 35002625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of alpha-conotoxin binding modes on neuronal nicotinic acetylcholine receptors.
    Dutertre S; Nicke A; Tyndall JD; Lewis RJ
    J Mol Recognit; 2004; 17(4):339-47. PubMed ID: 15227641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular basis for the differential sensitivity of rat and human α9α10 nAChRs to α-conotoxin RgIA.
    Azam L; McIntosh JM
    J Neurochem; 2012 Sep; 122(6):1137-44. PubMed ID: 22774872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aspartic acid mutagenesis of αO-Conotoxin GeXIVA isomers reveals arginine residues crucial for inhibition of the α9α10 nicotinic acetylcholine receptor.
    Luo A; He J; Yu J; Wu Y; Harvey PJ; Kasheverov IE; Kudryavtsev DS; McIntosh JM; Tsetlin VI; Craik DJ; Zhangsun D; Luo S
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132472. PubMed ID: 38772455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. d-Amino Acid Substitution of α-Conotoxin RgIA Identifies its Critical Residues and Improves the Enzymatic Stability.
    Ren J; Zhu X; Xu P; Li R; Fu Y; Dong S; Zhangsun D; Wu Y; Luo S
    Mar Drugs; 2019 Feb; 17(3):. PubMed ID: 30823399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and Activity Studies of Disulfide-Deficient Analogues of αO-Conotoxin GeXIVA.
    Xu P; Kaas Q; Wu Y; Zhu X; Li X; Harvey PJ; Zhangsun D; Craik DJ; Luo S
    J Med Chem; 2020 Feb; 63(4):1564-1575. PubMed ID: 31986036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural mechanisms for α-conotoxin activity at the human α3β4 nicotinic acetylcholine receptor.
    Abraham N; Healy M; Ragnarsson L; Brust A; Alewood PF; Lewis RJ
    Sci Rep; 2017 Mar; 7():45466. PubMed ID: 28361878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The synthesis, structural characterization, and receptor specificity of the alpha-conotoxin Vc1.1.
    Clark RJ; Fischer H; Nevin ST; Adams DJ; Craik DJ
    J Biol Chem; 2006 Aug; 281(32):23254-63. PubMed ID: 16754662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RgIA4 Potently Blocks Mouse α9α10 nAChRs and Provides Long Lasting Protection against Oxaliplatin-Induced Cold Allodynia.
    Christensen SB; Hone AJ; Roux I; Kniazeff J; Pin JP; Upert G; Servent D; Glowatzki E; McIntosh JM
    Front Cell Neurosci; 2017; 11():219. PubMed ID: 28785206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational approaches to understand alpha-conotoxin interactions at neuronal nicotinic receptors.
    Dutertre S; Lewis RJ
    Eur J Biochem; 2004 Jun; 271(12):2327-34. PubMed ID: 15182348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular modeling of the alpha9alpha10 nicotinic acetylcholine receptor subtype.
    Pérez EG; Cassels BK; Zapata-Torres G
    Bioorg Med Chem Lett; 2009 Jan; 19(1):251-4. PubMed ID: 19013796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Residues Responsible for the Selectivity of α-Conotoxins for Ac-AChBP or nAChRs.
    Lin B; Xiang S; Li M
    Mar Drugs; 2016 Oct; 14(10):. PubMed ID: 27727162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alpha-conotoxin analogs with additional positive charge show increased selectivity towards Torpedo californica and some neuronal subtypes of nicotinic acetylcholine receptors.
    Kasheverov IE; Zhmak MN; Vulfius CA; Gorbacheva EV; Mordvintsev DY; Utkin YN; van Elk R; Smit AB; Tsetlin VI
    FEBS J; 2006 Oct; 273(19):4470-81. PubMed ID: 16956365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alpha-conotoxins ImI and ImII target distinct regions of the human alpha7 nicotinic acetylcholine receptor and distinguish human nicotinic receptor subtypes.
    Ellison M; Gao F; Wang HL; Sine SM; McIntosh JM; Olivera BM
    Biochemistry; 2004 Dec; 43(51):16019-26. PubMed ID: 15609996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.