These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 23566388)

  • 1. Computational study of particle size effects on selective binding of nanoparticles in arterial stenosis.
    Jeong W; Kim MJ; Rhee K
    Comput Biol Med; 2013 Jun; 43(5):417-24. PubMed ID: 23566388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of nanoparticle binding dynamics in microcirculation using an adhesion probability function.
    Sohrabi S; Yunus DE; Xu J; Yang J; Liu Y
    Microvasc Res; 2016 Nov; 108():41-7. PubMed ID: 27423938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Design and adjustment of a hydrodynamic model of turbulent flow separation area for in vitro experiment on the downstream of tubal stenosis].
    Guo Y; Shi Y; Xue W; Lin K; Liu S; Zhang J; Meng W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb; 22(1):38-42. PubMed ID: 15762111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mathematical model for blood flow through an arterial bifurcation.
    Tandon PN; Kawahara M; Rana UV
    Int J Biomed Comput; 1994 May; 35(4):309-25. PubMed ID: 8063457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A boundary layer model for wall shear stress in arterial stenosis.
    Provenzano PP; Rutland CJ
    Biorheology; 2002; 39(6):743-54. PubMed ID: 12454440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Boltzmann simulation on particle suspensions in a two-dimensional symmetric stenotic artery.
    Li H; Fang H; Lin Z; Xu S; Chen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031919. PubMed ID: 15089334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles.
    Schalow T; Brandt B; Starr DE; Laurin M; Shaikhutdinov SK; Schauermann S; Libuda J; Freund HJ
    Phys Chem Chem Phys; 2007 Mar; 9(11):1347-61. PubMed ID: 17347708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large eddy simulation of a stenosed artery using a femoral artery pulsatile flow profile.
    Barber TJ; Simmons A
    Artif Organs; 2011 Jul; 35(7):E155-60. PubMed ID: 21658078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying nanoparticle adhesion mediated by specific molecular interactions.
    Haun JB; Hammer DA
    Langmuir; 2008 Aug; 24(16):8821-32. PubMed ID: 18630976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of spiral blood flow in a model of arterial stenosis.
    Paul MC; Larman A
    Med Eng Phys; 2009 Nov; 31(9):1195-203. PubMed ID: 19674925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wall shear rate measurements in an elastic curved artery model.
    Weston MW; Tarbell JM
    Biorheology; 1997; 34(1):1-17. PubMed ID: 9176587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analysis of nanoparticle adhesion to endothelium: effects of kinetic rate constants and wall shear rates.
    Kim MJ; Rhee K
    Med Biol Eng Comput; 2011 Jul; 49(7):733-41. PubMed ID: 21556956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow-dependent concentration polarization of plasma proteins at the luminal surface of a semipermeable membrane.
    Naiki T; Karino T
    Biorheology; 1999; 36(3):243-56. PubMed ID: 10690271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of graft geometry on the patency of a systemic-to-pulmonary shunt: a computational fluid dynamics study.
    Waniewski J; Kurowska W; Mizerski JK; Trykozko A; Nowiński K; Brzezińska-Rajszys G; Kościesza A
    Artif Organs; 2005 Aug; 29(8):642-50. PubMed ID: 16048481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Margination and adhesion of micro- and nanoparticles in the coronary circulation: a step towards optimised drug carrier design.
    Forouzandehmehr M; Shamloo A
    Biomech Model Mechanobiol; 2018 Feb; 17(1):205-221. PubMed ID: 28861632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large deforming buoyant embolus passing through a stenotic common carotid artery: a computational simulation.
    Vahidi B; Fatouraee N
    J Biomech; 2012 Apr; 45(7):1312-22. PubMed ID: 22365500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of blood cell constituents: experimental investigation and computational modeling by discrete particle dynamics algorithm.
    Filipovic N; Ravnic D; Kojic M; Mentzer SJ; Haber S; Tsuda A
    Microvasc Res; 2008 Mar; 75(2):279-84. PubMed ID: 18068201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying turbulent wall shear stress in a stenosed pipe using large eddy simulation.
    Gårdhagen R; Lantz J; Carlsson F; Karlsson M
    J Biomech Eng; 2010 Jun; 132(6):061002. PubMed ID: 20887027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of stenosis severity on the hemodynamic parameters-assessment of the correlation between stress phase angle and wall shear stress.
    Sadeghi MR; Shirani E; Tafazzoli-Shadpour M; Samaee M
    J Biomech; 2011 Oct; 44(15):2614-26. PubMed ID: 21906742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle volumetric residence time calculations in arterial geometries.
    Kunov MJ; Steinman DA; Ethier CR
    J Biomech Eng; 1996 May; 118(2):158-64. PubMed ID: 8738779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.