These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 23566397)

  • 1. A semi-automated computer tool for the analysis of retinal vessel diameter dynamics.
    Euvrard G; Genevois O; Rivals I; Massin P; Collet A; Sahel JA; Paques M
    Comput Biol Med; 2013 Jun; 43(5):513-23. PubMed ID: 23566397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing dynamic properties of retinal vessels in the rat eye using high speed imaging.
    Golzan SM; Butlin M; Kouchaki Z; Gupta V; Avolio A; Graham SL
    Microvasc Res; 2014 Mar; 92():56-61. PubMed ID: 24389464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-automated retinal vessel analysis in nonmydriatic fundus photography.
    Schuster AK; Fischer JE; Vossmerbaeumer U
    Acta Ophthalmol; 2014 Feb; 92(1):e42-9. PubMed ID: 23879386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter.
    Gang L; Chutatape O; Krishnan SM
    IEEE Trans Biomed Eng; 2002 Feb; 49(2):168-72. PubMed ID: 12066884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal vessel diameter can reliably be determined in minipigs using Retinal Vessel Analyser with a microscope-mounted fundus camera.
    Papadopoulou DN; Mangioris G; Petropoulos IK; Mendrinos E; Mavropoulos A; Pournaras CJ
    Acta Ophthalmol; 2012 Jun; 90(4):e269-73. PubMed ID: 22405160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring arteriolar-to-venous ratio in retinal photography of patients with hypertension: development and application of a new semi-automated method.
    Pakter HM; Ferlin E; Fuchs SC; Maestri MK; Moraes RS; Nunes G; Moreira LB; Gus M; Fuchs FD
    Am J Hypertens; 2005 Mar; 18(3):417-21. PubMed ID: 15797663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction.
    Miri MS; Mahloojifar A
    IEEE Trans Biomed Eng; 2011 May; 58(5):1183-92. PubMed ID: 21147592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemic hyperoxia and retinal vasomotor responses.
    Jean-Louis S; Lovasik JV; Kergoat H
    Invest Ophthalmol Vis Sci; 2005 May; 46(5):1714-20. PubMed ID: 15851573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation associated with measurement of retinal vessel diameters at different points in the pulse cycle.
    Knudtson MD; Klein BE; Klein R; Wong TY; Hubbard LD; Lee KE; Meuer SM; Bulla CP
    Br J Ophthalmol; 2004 Jan; 88(1):57-61. PubMed ID: 14693774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time multimodal retinal image registration for a computer-assisted laser photocoagulation system.
    Broehan AM; Rudolph T; Amstutz CA; Kowal JH
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2816-24. PubMed ID: 21689999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal vessel segmentation using a multi-scale medialness function.
    Moghimirad E; Hamid Rezatofighi S; Soltanian-Zadeh H
    Comput Biol Med; 2012 Jan; 42(1):50-60. PubMed ID: 22099700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional reconstruction of blood vessels extracted from retinal fundus images.
    Martinez-Perez ME; Espinosa-Romero A
    Opt Express; 2012 May; 20(10):11451-65. PubMed ID: 22565765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection.
    Palomera-Pérez MA; Martinez-Perez ME; Benítez-Pérez H; Ortega-Arjona JL
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):500-6. PubMed ID: 20007040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of new vessels on the optic disc using retinal photographs.
    Goatman KA; Fleming AD; Philip S; Williams GJ; Olson JA; Sharp PF
    IEEE Trans Med Imaging; 2011 Apr; 30(4):972-9. PubMed ID: 21156389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Measuring retinal vascular diameter using the scanning laser ophthalmoscope and computer. Initial results].
    Nagel E; Vilser W; Lindloh C; Klein S
    Ophthalmologe; 1992 Oct; 89(5):432-6. PubMed ID: 1304226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of retinal vessel widths from fundus images based on 2-D modeling.
    Lowell J; Hunter A; Steel D; Basu A; Ryder R; Kennedy RL
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1196-204. PubMed ID: 15493688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method to measure peripheral retinal vascular caliber over an extended area.
    Cheung CY; Hsu W; Lee ML; Wang JJ; Mitchell P; Lau QP; Hamzah H; Ho M; Wong TY
    Microcirculation; 2010 Oct; 17(7):495-503. PubMed ID: 21040115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct measurement of retinal vessel diameter: comparison with microdensitometric methods based on fundus photographs.
    Suzuki Y
    Surv Ophthalmol; 1995 May; 39 Suppl 1():S57-65. PubMed ID: 7660313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An automated method of quantifying retinal vascular responses during exposure to novel environmental conditions.
    Meehan RT; Taylor GR; Rock P; Mader TH; Hunter N; Cymerman A
    Ophthalmology; 1990 Jul; 97(7):875-81. PubMed ID: 2381701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering.
    Tolias YA; Panas SM
    IEEE Trans Med Imaging; 1998 Apr; 17(2):263-73. PubMed ID: 9688158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.