These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 23566944)

  • 1. Effect of carbon nanohorns on nanofriction and wear reduction in dry and liquid environments.
    Maharaj D; Bhushan B; Iijima S
    J Colloid Interface Sci; 2013 Jun; 400():147-60. PubMed ID: 23566944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomanipulation, nanotribology and nanomechanics of Au nanorods in dry and liquid environments using an AFM and depth sensing nanoindenter.
    Maharaj D; Bhushan B
    Nanoscale; 2014 Jun; 6(11):5838-52. PubMed ID: 24752467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments.
    Maharaj D; Bhushan B
    Beilstein J Nanotechnol; 2012; 3():759-72. PubMed ID: 23213639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of water in modifying friction within MoS2 sliding interfaces.
    Zhao X; Perry SS
    ACS Appl Mater Interfaces; 2010 May; 2(5):1444-8. PubMed ID: 20415448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomechanical behavior of MoS2 and WS2 multi-walled nanotubes and carbon nanohorns.
    Maharaj D; Bhushan B
    Sci Rep; 2015 Feb; 5():8539. PubMed ID: 25702922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Friction Force Microscopy Analysis of Self-Adaptive W-S-C Coatings: Nanoscale Friction and Wear.
    Zekonyte J; Polcar T
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21056-64. PubMed ID: 26340161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nanoscale friction investigation during the manipulation of nanoparticles in controlled environments.
    Palacio M; Bhushan B
    Nanotechnology; 2008 Aug; 19(31):315710. PubMed ID: 21828802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy of silica nanoparticles and carbon nanohorns in macrophages and red blood cells.
    Tetard L; Passian A; Farahi RH; Thundat T
    Ultramicroscopy; 2010 May; 110(6):586-91. PubMed ID: 20226593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheological and tribological properties of carbon nanotube/thermoplastic nanocomposites incorporating inorganic fullerene-like WS2 nanoparticles.
    Díez-Pascual AM; Naffakh M; Marco C; Ellis G
    J Phys Chem B; 2012 Jul; 116(27):7959-69. PubMed ID: 22697425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic superlubricity and the elimination of wear on the nanoscale.
    Lantz MA; Wiesmann D; Gotsmann B
    Nat Nanotechnol; 2009 Sep; 4(9):586-91. PubMed ID: 19734932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of scale effects and directionality dependence on friction and adhesion of human hair using AFM and macroscale friction test apparatus.
    LaTorre C; Bhushan B
    Ultramicroscopy; 2006; 106(8-9):720-34. PubMed ID: 16675116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity.
    Kanaga Karuppiah KS; Bruck AL; Sundararajan S; Wang J; Lin Z; Xu ZH; Li X
    Acta Biomater; 2008 Sep; 4(5):1401-10. PubMed ID: 18378200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective decoration of Au nanoparticles on monolayer MoS2 single crystals.
    Shi Y; Huang JK; Jin L; Hsu YT; Yu SF; Li LJ; Yang HY
    Sci Rep; 2013; 3():1839. PubMed ID: 23670611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear.
    Chhowalla M; Amaratunga GA
    Nature; 2000 Sep; 407(6801):164-7. PubMed ID: 11001049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force microscopy of layering and friction in an ionic liquid.
    Hoth J; Hausen F; Müser MH; Bennewitz R
    J Phys Condens Matter; 2014 Jul; 26(28):284110. PubMed ID: 24919549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of friction reduction of nanoscale sliding contacts achieved through ultrasonic excitation.
    Jiryaei Sharahi H; Egberts P; Kim S
    Nanotechnology; 2019 Feb; 30(7):075502. PubMed ID: 30523838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addition of low concentrations of an ionic liquid to a base oil reduces friction over multiple length scales: a combined nano- and macrotribology investigation.
    Li H; Somers AE; Howlett PC; Rutland MW; Forsyth M; Atkin R
    Phys Chem Chem Phys; 2016 Mar; 18(9):6541-7. PubMed ID: 26865399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling.
    Wang N; Wei F; Qi Y; Li H; Lu X; Zhao G; Xu Q
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19888-94. PubMed ID: 25380411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-scale sliding contact deformation behaviour of enamel under wet and dry conditions.
    Guidoni G; Swain M; Jäger I
    J Mater Sci Mater Med; 2010 Apr; 21(4):1195-203. PubMed ID: 20145979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion, friction and wear on the nanoscale of MWNT tips and SWNT and MWNT arrays.
    Bhushan B; Galasso B; Bignardi C; Nguyen CV; Dai L; Qu L
    Nanotechnology; 2008 Mar; 19(12):125702. PubMed ID: 21817743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.