These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23567151)

  • 21. Effects of Low-Frequency Ultrasound on Microcystis aeruginosa from Cell Inactivation to Disruption.
    Tan X; Shu X; Guo J; Parajuli K; Zhang X; Duan Z
    Bull Environ Contam Toxicol; 2018 Jul; 101(1):117-123. PubMed ID: 29744520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic variation of the bloom-forming Cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms.
    Wilson AE; Sarnelle O; Neilan BA; Salmon TP; Gehringer MM; Hay ME
    Appl Environ Microbiol; 2005 Oct; 71(10):6126-33. PubMed ID: 16204530
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth suppression and apoptosis-like cell death in Microcystis aeruginosa by H
    Zhou T; Zheng J; Cao H; Wang X; Lou K; Zhang X; Tao Y
    Chemosphere; 2018 Nov; 211():1098-1108. PubMed ID: 30223325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Studies on hyperspectral characteristics of Microcystis aeruginosa under the cultivation conditions with different phosphorus concentrations].
    Qin ZY; Liu XH; Zhao JB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Feb; 33(2):494-7. PubMed ID: 23697140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation and degradation of Microcystis aeruginosa by UV-C irradiation.
    Ou H; Gao N; Deng Y; Wang H; Zhang H
    Chemosphere; 2011 Nov; 85(7):1192-8. PubMed ID: 21872902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of Microcystis aeruginosa by ultrasound: Inactivation mechanism and release of algal organic matter.
    Kong Y; Peng Y; Zhang Z; Zhang M; Zhou Y; Duan Z
    Ultrason Sonochem; 2019 Sep; 56():447-457. PubMed ID: 31101283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa.
    Hong Y; Hu HY; Xie X; Sakoda A; Sagehashi M; Li FM
    Aquat Toxicol; 2009 Feb; 91(3):262-9. PubMed ID: 19131120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective removal of Microcystis aeruginosa and microcystin-LR using nanosilicate platelets.
    Chang SC; Li CH; Lin JJ; Li YH; Lee MR
    Chemosphere; 2014 Mar; 99():49-55. PubMed ID: 24268348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of N-TiO
    Jin Y; Zhang S; Xu H; Ma C; Sun J; Li H; Pei H
    Environ Pollut; 2019 Feb; 245():642-650. PubMed ID: 30481678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasonic frequency effects on the removal of Microcystis aeruginosa.
    Zhang G; Zhang P; Wang B; Liu H
    Ultrason Sonochem; 2006 Jul; 13(5):446-50. PubMed ID: 16360333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of disinfection by-product formation during chlor(am)ination from algal organic matter after UV irradiation.
    Chen S; Deng J; Li L; Gao N
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5994-6002. PubMed ID: 29236244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyanobactericidal effect of Rhodococcus sp. isolated from eutrophic lake on Microcystis sp.
    Lee YK; Ahn CY; Kim HS; Oh HM
    Biotechnol Lett; 2010 Nov; 32(11):1673-8. PubMed ID: 20640876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of ultrasonic disinfection of Escherichia coli in the presence of titanium dioxide particles.
    Kubo M; Onodera R; Shibasaki-Kitakawa N; Tsumoto K; Yonemoto T
    Biotechnol Prog; 2005; 21(3):897-901. PubMed ID: 15932271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The efficacy and mechanisms of fungal suppression of freshwater harmful algal bloom species.
    Jia Y; Han G; Wang C; Guo P; Jiang W; Li X; Tian X
    J Hazard Mater; 2010 Nov; 183(1-3):176-81. PubMed ID: 20675050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An investigation of mechanisms for the enhanced coagulation removal of Microcystis aeruginosa by low-frequency ultrasound under different ultrasound energy densities.
    Huang YR; Li L; Wei XM; Li HZ; Zeng JY; Kuang R
    Ultrason Sonochem; 2020 Dec; 69():105278. PubMed ID: 32738454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2 powder under ultrasonic irradiation and application in sonocatalytic degradation of organic dyes.
    Wang J; Guo Y; Liu B; Jin X; Liu L; Xu R; Kong Y; Wang B
    Ultrason Sonochem; 2011 Jan; 18(1):177-83. PubMed ID: 20684888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of Immobilization Methods for TiO₂-Embedded Expanded Polystyrene Balls and Growth Inhibition of
    Joo JC; Kim GY; Lee MJ; Ahn CM; Lee WT; Kim JK
    J Nanosci Nanotechnol; 2021 Jul; 21(7):3960-3964. PubMed ID: 33715725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of photoreactivation on ultraviolet inactivation of Microcystis aeruginosa.
    Sakai H; Katayama H; Oguma K; Ohgaki S
    Water Sci Technol; 2011; 63(6):1224-9. PubMed ID: 21436560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of solution chemistry on the inactivation of particle-associated viruses by UV irradiation.
    Feng Z; Lu R; Yuan B; Zhou Z; Wu Q; Nguyen TH
    Colloids Surf B Biointerfaces; 2016 Dec; 148():622-628. PubMed ID: 27694052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of Microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms.
    Li P; Song Y; Yu S
    Water Res; 2014 Oct; 62():241-8. PubMed ID: 24960124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.