BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 23567152)

  • 1. Nuclear magnetic resonance approaches for characterizing interactions between the bacterial chaperonin GroEL and unstructured proteins.
    Nishida N; Yagi-Utsumi M; Motojima F; Yoshida M; Shimada I; Kato K
    J Biosci Bioeng; 2013 Aug; 116(2):160-4. PubMed ID: 23567152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR analysis of the binding of a rhodanese peptide to a minichaperone in solution.
    Kobayashi N; Freund SM; Chatellier J; Zahn R; Fersht AR
    J Mol Biol; 1999 Sep; 292(1):181-90. PubMed ID: 10493867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance spectroscopy with the stringent substrate rhodanese bound to the single-ring variant SR1 of the E. coli chaperonin GroEL.
    Koculi E; Horst R; Horwich AL; Wüthrich K
    Protein Sci; 2011 Aug; 20(8):1380-6. PubMed ID: 21633984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GroEL walks the fine line: the subtle balance of substrate and co-chaperonin binding by GroEL. A combinatorial investigation by design, selection and screening.
    Kawe M; Plückthun A
    J Mol Biol; 2006 Mar; 357(2):411-26. PubMed ID: 16427651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Productive folding of a tethered protein in the chaperonin GroEL-GroES cage.
    Motojima F; Yoshida M
    Biochem Biophys Res Commun; 2015 Oct; 466(1):72-5. PubMed ID: 26325470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of oxidized chaperonin GroEL with an unfolded protein at low temperatures.
    Melkani GC; Sielaff R; Zardeneta G; Mendoza JA
    Biosci Rep; 2012 Jun; 32(3):299-303. PubMed ID: 22273181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidized GroEL can function as a chaperonin.
    Melkani GC; Zardeneta G; Mendoza JA
    Front Biosci; 2004 Jan; 9():724-31. PubMed ID: 14766403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES.
    Weber F; Hayer-Hartl M
    Methods Mol Biol; 2000; 140():117-26. PubMed ID: 11484478
    [No Abstract]   [Full Text] [Related]  

  • 9. The lower hydrolysis of ATP by the stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature.
    Mendoza JA; Dulin P; Warren T
    Cryobiology; 2000 Dec; 41(4):319-23. PubMed ID: 11222029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single molecular observation of the interaction of GroEL with substrate proteins.
    Yamasaki R; Hoshino M; Wazawa T; Ishii Y; Yanagida T; Kawata Y; Higurashi T; Sakai K; Nagai J; Goto Y
    J Mol Biol; 1999 Oct; 292(5):965-72. PubMed ID: 10512696
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Murrali MG; Schiavina M; Sainati V; Bermel W; Pierattelli R; Felli IC
    J Biomol NMR; 2018 Mar; 70(3):167-175. PubMed ID: 29492731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active rhodanese lacking nonessential sulfhydryl groups contains an unstable C-terminal domain and can be bound, inactivated, and reactivated by GroEL.
    Ybarra J; Bhattacharyya AM; Panda M; Horowitz PM
    J Biol Chem; 2003 Jan; 278(3):1693-9. PubMed ID: 12433928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GroEL binds to and unfolds rhodanese posttranslationally.
    Reid BG; Flynn GC
    J Biol Chem; 1996 Mar; 271(12):7212-7. PubMed ID: 8636159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention of rhodanese aggregation by the chaperonin GroEL.
    Weber F; Hayer-Hartl M
    Methods Mol Biol; 2000; 140():111-5. PubMed ID: 11484477
    [No Abstract]   [Full Text] [Related]  

  • 15. Binding of defined regions of a polypeptide to GroEL and its implications for chaperonin-mediated protein folding.
    Hlodan R; Tempst P; Hartl FU
    Nat Struct Biol; 1995 Jul; 2(7):587-95. PubMed ID: 7664127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of interactions with the GroEL cavity on protein folding rates.
    Sirur A; Best RB
    Biophys J; 2013 Mar; 104(5):1098-106. PubMed ID: 23473493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the chaperonin activity of GroEL at heat-shock temperature.
    Melkani GC; Zardeneta G; Mendoza JA
    Int J Biochem Cell Biol; 2005 Jul; 37(7):1375-85. PubMed ID: 15833270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ATPase activity of chaperonin GroEL is highly stimulated at elevated temperatures.
    Mendoza JA; Warren T; Dulin P
    Biochem Biophys Res Commun; 1996 Dec; 229(1):271-4. PubMed ID: 8954117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NH2-terminal sequence truncation decreases the stability of bovine rhodanese, minimally perturbs its crystal structure, and enhances interaction with GroEL under native conditions.
    Trevino RJ; Gliubich F; Berni R; Cianci M; Chirgwin JM; Zanotti G; Horowitz PM
    J Biol Chem; 1999 May; 274(20):13938-47. PubMed ID: 10318804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaperonin-assisted protein folding of the enzyme rhodanese by GroEL/GroES.
    Horowitz PM
    Methods Mol Biol; 1995; 40():361-8. PubMed ID: 7633531
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.