These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 23567207)
1. Monovalent IgG4 molecules: immunoglobulin Fc mutations that result in a monomeric structure. Wilkinson IC; Fowler SB; Machiesky L; Miller K; Hayes DB; Adib M; Her C; Borrok MJ; Tsui P; Burrell M; Corkill DJ; Witt S; Lowe DC; Webster CI MAbs; 2013; 5(3):406-17. PubMed ID: 23567207 [TBL] [Abstract][Full Text] [Related]
2. Engineered soluble monomeric IgG1 CH3 domain: generation, mechanisms of function, and implications for design of biological therapeutics. Ying T; Chen W; Feng Y; Wang Y; Gong R; Dimitrov DS J Biol Chem; 2013 Aug; 288(35):25154-25164. PubMed ID: 23867459 [TBL] [Abstract][Full Text] [Related]
4. Cross-species analysis of Fc engineered anti-Lewis-Y human IgG1 variants in human neonatal receptor transgenic mice reveal importance of S254 and Y436 in binding human neonatal Fc receptor. Burvenich IJ; Farrugia W; Lee FT; Catimel B; Liu Z; Makris D; Cao D; O'Keefe GJ; Brechbiel MW; King D; Spirkoska V; Allan LC; Ramsland PA; Scott AM MAbs; 2016; 8(4):775-86. PubMed ID: 27030023 [TBL] [Abstract][Full Text] [Related]
5. Combined glyco- and protein-Fc engineering simultaneously enhance cytotoxicity and half-life of a therapeutic antibody. Monnet C; Jorieux S; Souyris N; Zaki O; Jacquet A; Fournier N; Crozet F; de Romeuf C; Bouayadi K; Urbain R; Behrens CK; Mondon P; Fontayne A MAbs; 2014; 6(2):422-36. PubMed ID: 24492301 [TBL] [Abstract][Full Text] [Related]
6. Design and characterization of novel dual Fc antibody with enhanced avidity for Fc receptors. Goulet DR; Zwolak A; Williams JA; Chiu ML; Atkins WM Proteins; 2020 May; 88(5):689-697. PubMed ID: 31702857 [TBL] [Abstract][Full Text] [Related]
7. Engineering a monomeric Fc domain modality by N-glycosylation for the half-life extension of biotherapeutics. Ishino T; Wang M; Mosyak L; Tam A; Duan W; Svenson K; Joyce A; O'Hara DM; Lin L; Somers WS; Kriz R J Biol Chem; 2013 Jun; 288(23):16529-16537. PubMed ID: 23615911 [TBL] [Abstract][Full Text] [Related]
8. In vivo pharmacokinetic enhancement of monomeric Fc and monovalent bispecific designs through structural guidance. Shan L; Dyk NV; Haskins N; Cook KM; Rosenthal KL; Mazor R; Dragulin-Otto S; Jiang Y; Wu H; Dall'Acqua WF; Borrok MJ; Damschroder MM; Oganesyan V Commun Biol; 2021 Sep; 4(1):1048. PubMed ID: 34497355 [TBL] [Abstract][Full Text] [Related]
9. Global conformational changes in IgG-Fc upon mutation of the FcRn-binding site are not associated with altered antibody-dependent effector functions. Burvenich IJG; Farrugia W; Liu Z; Makris D; King D; Gloria B; Perani A; Allan LC; Scott AM; Ramsland PA Biochem J; 2018 Jul; 475(13):2179-2190. PubMed ID: 29794155 [TBL] [Abstract][Full Text] [Related]
10. Antibody Fc engineering for enhanced neonatal Fc receptor binding and prolonged circulation half-life. Mackness BC; Jaworski JA; Boudanova E; Park A; Valente D; Mauriac C; Pasquier O; Schmidt T; Kabiri M; Kandira A; Radošević K; Qiu H MAbs; 2019 Oct; 11(7):1276-1288. PubMed ID: 31216930 [TBL] [Abstract][Full Text] [Related]
11. Enhanced FcRn-dependent transepithelial delivery of IgG by Fc-engineering and polymerization. Foss S; Grevys A; Sand KMK; Bern M; Blundell P; Michaelsen TE; Pleass RJ; Sandlie I; Andersen JT J Control Release; 2016 Feb; 223():42-52. PubMed ID: 26718855 [TBL] [Abstract][Full Text] [Related]
12. Identification of human IgG1 variant with enhanced FcRn binding and without increased binding to rheumatoid factor autoantibody. Maeda A; Iwayanagi Y; Haraya K; Tachibana T; Nakamura G; Nambu T; Esaki K; Hattori K; Igawa T MAbs; 2017 Jul; 9(5):844-853. PubMed ID: 28387635 [TBL] [Abstract][Full Text] [Related]
13. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. Suzuki T; Ishii-Watabe A; Tada M; Kobayashi T; Kanayasu-Toyoda T; Kawanishi T; Yamaguchi T J Immunol; 2010 Feb; 184(4):1968-76. PubMed ID: 20083659 [TBL] [Abstract][Full Text] [Related]
14. Neonatal Fc receptor (FcRn): a novel target for therapeutic antibodies and antibody engineering. Wang Y; Tian Z; Thirumalai D; Zhang X J Drug Target; 2014 May; 22(4):269-78. PubMed ID: 24404896 [TBL] [Abstract][Full Text] [Related]
15. Fc engineering: serum half-life modulation through FcRn binding. Olafsen T Methods Mol Biol; 2012; 907():537-56. PubMed ID: 22907373 [TBL] [Abstract][Full Text] [Related]
16. Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics. Schoch A; Kettenberger H; Mundigl O; Winter G; Engert J; Heinrich J; Emrich T Proc Natl Acad Sci U S A; 2015 May; 112(19):5997-6002. PubMed ID: 25918417 [TBL] [Abstract][Full Text] [Related]
17. Extended plasma half-life of albumin-binding domain fused human IgA upon pH-dependent albumin engagement of human FcRn Mester S; Evers M; Meyer S; Nilsen J; Greiff V; Sandlie I; Leusen J; Andersen JT MAbs; 2021; 13(1):1893888. PubMed ID: 33691596 [TBL] [Abstract][Full Text] [Related]
18. Single-chain variable fragment albumin fusions bind the neonatal Fc receptor (FcRn) in a species-dependent manner: implications for in vivo half-life evaluation of albumin fusion therapeutics. Andersen JT; Cameron J; Plumridge A; Evans L; Sleep D; Sandlie I J Biol Chem; 2013 Aug; 288(33):24277-85. PubMed ID: 23818524 [TBL] [Abstract][Full Text] [Related]
19. Targeting the neonatal fc receptor for antigen delivery using engineered fc fragments. Mi W; Wanjie S; Lo ST; Gan Z; Pickl-Herk B; Ober RJ; Ward ES J Immunol; 2008 Dec; 181(11):7550-61. PubMed ID: 19017944 [TBL] [Abstract][Full Text] [Related]