These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2356726)

  • 1. Prediction of intelligibility of non-linearly processed speech.
    Ludvigsen C; Elberling C; Keidser G; Poulsen T
    Acta Otolaryngol Suppl; 1990; 469():190-5. PubMed ID: 2356726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Intelligibility of Non-linearly Processed Speech.
    Ludvigsen C; Elberling C; Keidser G; Poulsen T
    Acta Otolaryngol; 1990; 109(sup469):190-195. PubMed ID: 31905513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a noise reduction method--comparison between observed scores and scores predicted from STI.
    Ludvigsen C; Elberling C; Keidser G
    Scand Audiol Suppl; 1993; 38():50-5. PubMed ID: 8153564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time multiband dynamic compression and noise reduction for binaural hearing aids.
    Kollmeier B; Peissig J; Hohmann V
    J Rehabil Res Dev; 1993; 30(1):82-94. PubMed ID: 8263832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of adaptive digital signal processing to speech enhancement for the hearing impaired.
    Chabries DM; Christiansen RW; Brey RH; Robinette MS; Harris RW
    J Rehabil Res Dev; 1987; 24(4):65-74. PubMed ID: 3430391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Considerations on adaptive gain and frequency response in hearing aids.
    Festen JM; van Dijkhuizen JN; Plomp R
    Acta Otolaryngol Suppl; 1990; 469():196-201. PubMed ID: 2356727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of slow-acting wide dynamic range compression on measures of intelligibility and ratings of speech quality in simulated-loss listeners.
    Rosengard PS; Payton KL; Braida LD
    J Speech Lang Hear Res; 2005 Jun; 48(3):702-14. PubMed ID: 16197282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of objective measures for intelligibility prediction of time-frequency weighted noisy speech.
    Taal CH; Hendriks RC; Heusdens R; Jensen J
    J Acoust Soc Am; 2011 Nov; 130(5):3013-27. PubMed ID: 22087929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binaural intelligibility prediction based on the speech transmission index.
    van Wijngaarden SJ; Drullman R
    J Acoust Soc Am; 2008 Jun; 123(6):4514-23. PubMed ID: 18537400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using genetic algorithms with subjective input from human subjects: implications for fitting hearing aids and cochlear implants.
    Başkent D; Eiler CL; Edwards B
    Ear Hear; 2007 Jun; 28(3):370-80. PubMed ID: 17485986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speech intelligibility considerations in specifying characteristics of a programmable hearing aid.
    Pavlovic CV
    Acta Otolaryngol Suppl; 1990; 469():181-9. PubMed ID: 2356725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The concept of signal-to-noise ratio in the modulation domain and speech intelligibility.
    Dubbelboer F; Houtgast T
    J Acoust Soc Am; 2008 Dec; 124(6):3937-46. PubMed ID: 19206818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Female voice communications in high level aircraft cockpit noises--part II: vocoder and automatic speech recognition systems.
    Nixon C; Anderson T; Morris L; McCavitt A; McKinley R; Yeager D; McDaniel M
    Aviat Space Environ Med; 1998 Nov; 69(11):1087-94. PubMed ID: 9819167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement in speech intelligibility in noise employing an adaptive filter with normal and hearing-impaired subjects.
    Brey RH; Robinette MS; Chabries DM; Christiansen RW
    J Rehabil Res Dev; 1987; 24(4):75-86. PubMed ID: 3430392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech understanding in background noise with the two-microphone adaptive beamformer BEAM in the Nucleus Freedom Cochlear Implant System.
    Spriet A; Van Deun L; Eftaxiadis K; Laneau J; Moonen M; van Dijk B; van Wieringen A; Wouters J
    Ear Hear; 2007 Feb; 28(1):62-72. PubMed ID: 17204899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognition and hearing aids.
    Lunner T; Rudner M; Rönnberg J
    Scand J Psychol; 2009 Oct; 50(5):395-403. PubMed ID: 19778387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speech enhancement by filtering in the loudness domain.
    Kollmeier B
    Acta Otolaryngol Suppl; 1990; 469():207-14. PubMed ID: 2356729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binaural noise-reduction hearing aid scheme with real-time processing in the frequency domain.
    Kollmeier B; Peissig J; Hohmann V
    Scand Audiol Suppl; 1993; 38():28-38. PubMed ID: 8153562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive fitting of multiple algorithms implemented in the same digital hearing aid.
    Franck BA; Boymans M; Dreschler WA
    Int J Audiol; 2007 Jul; 46(7):388-97. PubMed ID: 17680471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The combined effects of reverberation and nonstationary noise on sentence intelligibility.
    George EL; Festen JM; Houtgast T
    J Acoust Soc Am; 2008 Aug; 124(2):1269-77. PubMed ID: 18681613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.