BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 23567313)

  • 1. Chloroquine causes similar electroretinogram modifications, neuronal phospholipidosis and marked impairment of synaptic vesicle transport in albino and pigmented rats.
    Lezmi S; Rokh N; Saint-Macary G; Pino M; Sallez V; Thevenard F; Roome N; Rosolen S
    Toxicology; 2013 Jun; 308():50-9. PubMed ID: 23567313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of eye pigmentation on transscleral drug delivery.
    Cheruvu NP; Amrite AC; Kompella UB
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):333-41. PubMed ID: 18172110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Involvement of PAF (Platelet-Activating Factor) in chloroquine-induced retinopathy].
    Meyniel G; Doly M; Millerin M; Braquet P
    C R Acad Sci III; 1992; 314(2):61-5. PubMed ID: 1559183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional evaluation of retina and optic nerve in the rat model of chronic ocular hypertension.
    Grozdanic SD; Kwon YH; Sakaguchi DS; Kardon RH; Sonea IM
    Exp Eye Res; 2004 Jul; 79(1):75-83. PubMed ID: 15183102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Chloroquine- and chlorphentermin-induced lipidosis in rat retina].
    Bredehorn T; Duncker GI
    Klin Monbl Augenheilkd; 1999 Mar; 214(3):178-82. PubMed ID: 10220731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Third-order neuronal responses contribute to shaping the negative electroretinogram in sodium iodate-treated rats.
    Tanaka M; Machida S; Ohtaka K; Tazawa Y; Nitta J
    Curr Eye Res; 2005 Jun; 30(6):443-53. PubMed ID: 16020277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal toxicity of chloroquine hydrochloride administered by intraperitoneal injection.
    Gaynes BI; Torczynski E; Varro Z; Grostern R; Perlman J
    J Appl Toxicol; 2008 Oct; 28(7):895-900. PubMed ID: 18484088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloroquine impairs visual transduction via modulation of acid sensing ion channel 1a.
    Li X; Fei J; Lei Z; Liu K; Wu J; Meng T; Yu J; Li J
    Toxicol Lett; 2014 Aug; 228(3):200-6. PubMed ID: 24821433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina.
    Cuenca N; Pinilla I; Sauvé Y; Lu B; Wang S; Lund RD
    Neuroscience; 2004; 127(2):301-17. PubMed ID: 15262321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevention of chloroquine-induced electroretinographic damage by a new platelet-activating factor antagonist, BN 50730.
    Doly M; Cluzel J; Millerin M; Bonhomme B; Braquet P
    Ophthalmic Res; 1993; 25(5):314-8. PubMed ID: 8259265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related retinal function changes in albino and pigmented rats.
    Charng J; Nguyen CT; Bui BV; Vingrys AJ
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):8891-9. PubMed ID: 22003116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorption, distribution and excretion of 14C-chloroquine after single oral administration in albino and pigmented rats: binding characteristics of chloroquine-related radioactivity to melanin in-vivo.
    Ono C; Yamada M; Tanaka M
    J Pharm Pharmacol; 2003 Dec; 55(12):1647-54. PubMed ID: 14738591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related retinal changes--comparison between albino and pigmented rats.
    Weisse I; Loosen H; Peil H
    Lens Eye Toxic Res; 1990; 7(3-4):717-39. PubMed ID: 2100190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloroquine-induced lipidosis in the rat retina: functional and morphological changes after withdrawal of the drug.
    Duncker G; Bredehorn T
    Graefes Arch Clin Exp Ophthalmol; 1996 Jun; 234(6):378-81. PubMed ID: 8738704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloroquine-induced lipidosis in the rat retina: a functional and morphological study.
    Duncker G; Schmiederer M; Bredehorn T
    Ophthalmologica; 1995; 209(2):79-83. PubMed ID: 7746650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preservation of inner retinal responses in the aged Royal College of Surgeons rat. Evidence against glutamate excitotoxicity in photoreceptor degeneration.
    Bush RA; Hawks KW; Sieving PA
    Invest Ophthalmol Vis Sci; 1995 Sep; 36(10):2054-62. PubMed ID: 7657544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin-diabetic rats.
    Aizu Y; Oyanagi K; Hu J; Nakagawa H
    Neuropathology; 2002 Sep; 22(3):161-70. PubMed ID: 12416555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effect of dopamine on mitosis in early postnatal albino and pigmented rat retinae.
    Kralj-Hans I; Tibber M; Jeffery G; Mobbs P
    J Neurobiol; 2006 Jan; 66(1):47-55. PubMed ID: 16187306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of long-term chloroquine exposure on the phospholipid metabolism in retina and pigment epithelium of the mouse.
    Hallberg A; Naeser P; Andersson A
    Acta Ophthalmol (Copenh); 1990 Apr; 68(2):125-30. PubMed ID: 2356698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate transporter localization does not correspond to the temporary functional recovery and late degeneration after acute ocular ischemia in rats.
    Barnett NL; Grozdanic SD
    Exp Eye Res; 2004 Oct; 79(4):513-24. PubMed ID: 15381035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.