BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 23567504)

  • 1. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection.
    Puyal J; Ginet V; Clarke PG
    Prog Neurobiol; 2013 Jun; 105():24-48. PubMed ID: 23567504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postischemic treatment of neonatal cerebral ischemia should target autophagy.
    Puyal J; Vaslin A; Mottier V; Clarke PG
    Ann Neurol; 2009 Sep; 66(3):378-89. PubMed ID: 19551849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal autophagy in cerebral ischemia--a potential target for neuroprotective strategies?
    Gabryel B; Kost A; Kasprowska D
    Pharmacol Rep; 2012; 64(1):1-15. PubMed ID: 22580515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal death and neuroprotection: a review.
    Repici M; Mariani J; Borsello T
    Methods Mol Biol; 2007; 399():1-14. PubMed ID: 18309921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroprotection of the leaf and stem of Vitis amurensis and their active compounds against ischemic brain damage in rats and excitotoxicity in cultured neurons.
    Kim JY; Jeong HY; Lee HK; Kim S; Hwang BY; Bae K; Seong YH
    Phytomedicine; 2012 Jan; 19(2):150-9. PubMed ID: 21778042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transforming growth factor-beta: a neuroprotective factor in cerebral ischemia.
    Dhandapani KM; Brann DW
    Cell Biochem Biophys; 2003; 39(1):13-22. PubMed ID: 12835526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal apoptosis after CNS injury: the roles of glutamate and calcium.
    Zipfel GJ; Babcock DJ; Lee JM; Choi DW
    J Neurotrauma; 2000 Oct; 17(10):857-69. PubMed ID: 11063053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Death/survival signaling pathways in cerebral ischemia and the developing therapeutic strategies].
    Zuo W; Chen NH
    Sheng Li Ke Xue Jin Zhan; 2013 Jun; 44(3):200-5. PubMed ID: 24027827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats.
    Wei L; Ying DJ; Cui L; Langsdorf J; Yu SP
    Brain Res; 2004 Oct; 1022(1-2):54-61. PubMed ID: 15353213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of neuronal cell death in acute and delayed in vitro ischemia (oxygen-glucose deprivation) models.
    Meloni BP; Meade AJ; Kitikomolsuk D; Knuckey NW
    J Neurosci Methods; 2011 Jan; 195(1):67-74. PubMed ID: 21134398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell death mechanism and protective effect of erythropoietin after focal ischemia in the whisker-barrel cortex of neonatal rats.
    Wei L; Han BH; Li Y; Keogh CL; Holtzman DM; Yu SP
    J Pharmacol Exp Ther; 2006 Apr; 317(1):109-16. PubMed ID: 16357210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats.
    Yan W; Zhang H; Bai X; Lu Y; Dong H; Xiong L
    Brain Res; 2011 Jul; 1402():109-21. PubMed ID: 21684529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ischemia and ischemic tolerance in the brain: an overview.
    Zemke D; Smith JL; Reeves MJ; Majid A
    Neurotoxicology; 2004 Dec; 25(6):895-904. PubMed ID: 15474608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage.
    Jing CH; Wang L; Liu PP; Wu C; Ruan D; Chen G
    Neuroscience; 2012 Jun; 213():144-53. PubMed ID: 22521819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagy in acute brain injury.
    Galluzzi L; Bravo-San Pedro JM; Blomgren K; Kroemer G
    Nat Rev Neurosci; 2016 Aug; 17(8):467-84. PubMed ID: 27256553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression in cerebral ischemia: a new approach for neuroprotection.
    Millán M; Arenillas J
    Cerebrovasc Dis; 2006; 21 Suppl 2():30-7. PubMed ID: 16651812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroprotective effects of anesthetic agents.
    Kawaguchi M; Furuya H; Patel PM
    J Anesth; 2005; 19(2):150-6. PubMed ID: 15875133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroprotection by a bile acid in an acute stroke model in the rat.
    Rodrigues CM; Spellman SR; Solá S; Grande AW; Linehan-Stieers C; Low WC; Steer CJ
    J Cereb Blood Flow Metab; 2002 Apr; 22(4):463-71. PubMed ID: 11919517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The brain-specific tissue-type plasminogen activator inhibitor, neuroserpin, protects neurons against excitotoxicity both in vitro and in vivo.
    Lebeurrier N; Liot G; Lopez-Atalaya JP; Orset C; Fernandez-Monreal M; Sonderegger P; Ali C; Vivien D
    Mol Cell Neurosci; 2005 Dec; 30(4):552-8. PubMed ID: 16209928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroprotective effect of the peptides ADNF-9 and NAP on hypoxic-ischemic brain injury in neonatal rats.
    Kumral A; Yesilirmak DC; Sonmez U; Baskin H; Tugyan K; Yilmaz O; Genc S; Gokmen N; Genc K; Duman N; Ozkan H
    Brain Res; 2006 Oct; 1115(1):169-78. PubMed ID: 16938277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.