These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23567527)

  • 1. Optical system error analysis and calibration method of high-accuracy star trackers.
    Sun T; Xing F; You Z
    Sensors (Basel); 2013 Apr; 13(4):4598-623. PubMed ID: 23567527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An accuracy measurement method for star trackers based on direct astronomic observation.
    Sun T; Xing F; Wang X; You Z; Chu D
    Sci Rep; 2016 Mar; 6():22593. PubMed ID: 26948412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comprehensive Calibration Method for a Star Tracker and Gyroscope Units Integrated System.
    Tan W; Dai D; Wu W; Wang X; Qin S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30223523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic accuracy measurement method for star trackers using a time-synchronized high-accuracy turntable.
    Lu R; Zhang J; Han X; Wu Y; Li L
    Appl Opt; 2024 May; 63(14):3854-3862. PubMed ID: 38856348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Frequency Error Extraction and Compensation for Attitude Measurements from STECE Star Tracker.
    Lai Y; Gu D; Liu J; Li W; Yi D
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27754320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A star tracker on-orbit calibration method based on vector pattern match.
    Li J; Xiong K; Wei X; Zhang G
    Rev Sci Instrum; 2017 Apr; 88(4):043101. PubMed ID: 28456261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Error coupling analysis of the laboratory calibration method for a star tracker.
    Zhao S; Wang X; Tan W; Dai D; Qin S
    Appl Opt; 2021 Mar; 60(8):2372-2379. PubMed ID: 33690337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization method of star tracker orientation for sun-synchronous orbit based on space light distribution.
    Wang G; Xing F; Wei M; Sun T; You Z
    Appl Opt; 2017 May; 56(15):4480-4490. PubMed ID: 29047881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing systematic centroid errors induced by fiber optic faceplates in intensified high-accuracy star trackers.
    Xiong K; Jiang J
    Sensors (Basel); 2015 May; 15(6):12389-409. PubMed ID: 26016920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel approach to improve the attitude update rate of a star tracker.
    Zhang S; Xing F; Sun T; You Z; Wei M
    Opt Express; 2018 Mar; 26(5):5164-5181. PubMed ID: 29529724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Star centroiding error compensation for intensified star sensors.
    Jiang J; Xiong K; Yu W; Yan J; Zhang G
    Opt Express; 2016 Dec; 24(26):29830-29842. PubMed ID: 28059369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-orbit calibration for star sensors without priori information.
    Zhang H; Niu Y; Lu J; Zhang C; Yang Y
    Opt Express; 2017 Jul; 25(15):18393-18409. PubMed ID: 28789325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors.
    Wang S; Geng Y; Jin R
    Sensors (Basel); 2015 Dec; 15(12):31428-41. PubMed ID: 26703599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective star tracking method based on optical flow analysis for star trackers.
    Sun T; Xing F; Wang X; Li J; Wei M; You Z
    Appl Opt; 2016 Dec; 55(36):10335-10340. PubMed ID: 28059260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation analysis of dynamic working performance for star trackers.
    Shen J; Zhang G; Wei X
    J Opt Soc Am A Opt Image Sci Vis; 2010 Dec; 27(12):2638-47. PubMed ID: 21119749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exposure time optimization for highly dynamic star trackers.
    Wei X; Tan W; Li J; Zhang G
    Sensors (Basel); 2014 Mar; 14(3):4914-31. PubMed ID: 24618776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and testing of star tracker algorithms for autonomous optical line-of-sight deep-space navigation.
    Casini S; Cervone A; Monna B; Visser P
    Appl Opt; 2023 Aug; 62(22):5896-5909. PubMed ID: 37706941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Simulation of a High-Speed Star Tracker for Direct Optical Feedback Control in ADCS.
    Marin M; Bang H
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32331409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation angular distance error modeling and matching threshold optimization for terrestrial star tracker.
    Wang Z; Jiang J; Zhang G
    Opt Express; 2019 Nov; 27(23):33518-33536. PubMed ID: 31878419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Evaluation of Low-Cost Vision Processors for Efficient Star Identification.
    Agarwal S; Hervas-Martin E; Byrne J; Dunne A; Luis Espinosa-Aranda J; Rijlaarsdam D
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.