These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23567564)

  • 61. Absolute three-dimensional shape measurement using coded fringe patterns without phase unwrapping or projector calibration.
    Lohry W; Chen V; Zhang S
    Opt Express; 2014 Jan; 22(2):1287-301. PubMed ID: 24515134
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Four-dimensional measurement by a single-frame structured light method.
    Sitnik R
    Appl Opt; 2009 Jun; 48(18):3344-54. PubMed ID: 19543340
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement.
    Xiao S; Tao W; Zhao H
    Sensors (Basel); 2016 Apr; 16(5):. PubMed ID: 27136553
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Calibration-based two-frequency projected fringe profilometry: a robust, accurate, and single-shot measurement for objects with large depth discontinuities.
    Su WH; Liu H
    Opt Express; 2006 Oct; 14(20):9178-87. PubMed ID: 19529298
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Recovery of absolute height from wrapped phase maps for fringe projection profilometry.
    Xu Y; Jia S; Bao Q; Chen H; Yang J
    Opt Express; 2014 Jul; 22(14):16819-28. PubMed ID: 25090499
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Marker encoded fringe projection profilometry for efficient 3D model acquisition.
    Budianto B; Lun PK; Hsung TC
    Appl Opt; 2014 Nov; 53(31):7442-53. PubMed ID: 25402910
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Intensity range extension method for three-dimensional shape measurement in phase-measuring profilometry using a digital micromirror device camera.
    Ri S; Fujigaki M; Morimoto Y
    Appl Opt; 2008 Oct; 47(29):5400-7. PubMed ID: 18846182
    [TBL] [Abstract][Full Text] [Related]  

  • 68. High-speed real-time 3D shape measurement based on adaptive depth constraint.
    Tao T; Chen Q; Feng S; Qian J; Hu Y; Huang L; Zuo C
    Opt Express; 2018 Aug; 26(17):22440-22456. PubMed ID: 30130938
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Gamma-distorted fringe image modeling and accurate gamma correction for fast phase measuring profilometry.
    Li Z; Li Y
    Opt Lett; 2011 Jan; 36(2):154-6. PubMed ID: 21263484
    [TBL] [Abstract][Full Text] [Related]  

  • 70. High-speed pattern projection for three-dimensional shape measurement using laser speckles.
    Schaffer M; Grosse M; Kowarschik R
    Appl Opt; 2010 Jun; 49(18):3622-9. PubMed ID: 20563218
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fringe projection profilometry based on a novel phase shift method.
    Fu Y; Luo Q
    Opt Express; 2011 Oct; 19(22):21739-47. PubMed ID: 22109024
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Generalized phase evaluation for stereophotogrammetric correspondence assignment.
    Große M; Schaffer M; Harendt B; Kowarschik R
    Opt Lett; 2012 Aug; 37(16):3468-70. PubMed ID: 23381293
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fringe-projection profilometry based on two-dimensional empirical mode decomposition.
    Zheng S; Cao Y
    Appl Opt; 2013 Nov; 52(31):7648-53. PubMed ID: 24216669
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Defocused projection model for phase-shifting profilometry with a large depth range.
    Yu Y; Da F
    Opt Express; 2021 Jul; 29(15):23597-23610. PubMed ID: 34614623
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Real-time 3D shape measurement of dynamic scenes using fringe projection profilometry: lightweight NAS-optimized dual frequency deep learning approach.
    Li Y; Wu Z; Shen J; Zhang Q
    Opt Express; 2023 Nov; 31(24):40803-40823. PubMed ID: 38041372
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Calibration method for panoramic 3D shape measurement with plane mirrors.
    Yin W; Feng S; Tao T; Huang L; Zhang S; Chen Q; Zuo C
    Opt Express; 2019 Dec; 27(25):36538-36550. PubMed ID: 31873430
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Deep learning-based fringe modulation-enhancing method for accurate fringe projection profilometry.
    Yu H; Zheng D; Fu J; Zhang Y; Zuo C; Han J
    Opt Express; 2020 Jul; 28(15):21692-21703. PubMed ID: 32752442
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fringe order error in multifrequency fringe projection phase unwrapping: reason and correction.
    Zhang C; Zhao H; Zhang L
    Appl Opt; 2015 Nov; 54(32):9390-9. PubMed ID: 26560763
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optimal wavelength selection strategy in temporal phase unwrapping with projection distance minimization.
    Li H; Hu Y; Tao T; Feng S; Zhang M; Zhang Y; Zuo C
    Appl Opt; 2018 Apr; 57(10):2352-2360. PubMed ID: 29714215
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Theoretical considerations on aperiodic sinusoidal fringes in comparison to phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement.
    Heist S; Kühmstedt P; Tünnermann A; Notni G
    Appl Opt; 2015 Dec; 54(35):10541-51. PubMed ID: 26836883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.