These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23567686)

  • 1. Hydrolysis, acidification and dewaterability of waste activated sludge under alkaline conditions: combined effects of NaOH and Ca(OH)2.
    Su G; Huo M; Yuan Z; Wang S; Peng Y
    Bioresour Technol; 2013 May; 136():237-43. PubMed ID: 23567686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal.
    Li X; Chen H; Hu L; Yu L; Chen Y; Gu G
    Environ Sci Technol; 2011 Mar; 45(5):1834-9. PubMed ID: 21280571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of alkali types on waste activated sludge (WAS) fermentation and microbial communities.
    Li X; Peng Y; Li B; Wu C; Zhang L; Zhao Y
    Chemosphere; 2017 Nov; 186():864-872. PubMed ID: 28826134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long term effect of alkali types on waste activated sludge hydrolytic acidification and microbial community at low temperature.
    Jin B; Wang S; Xing L; Li B; Peng Y
    Bioresour Technol; 2016 Jan; 200():587-97. PubMed ID: 26546788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects and model of alkaline waste activated sludge treatment.
    Li H; Jin Y; Mahar R; Wang Z; Nie Y
    Bioresour Technol; 2008 Jul; 99(11):5140-4. PubMed ID: 17945487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Waste activated sludge hydrolysis and acidification: A comparison between sodium hydroxide and steel slag addition.
    Zhang Y; Zhang C; Zhang X; Feng L; Li Y; Zhou Q
    J Environ Sci (China); 2016 Oct; 48():200-208. PubMed ID: 27745665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0.
    Yan Y; Feng L; Zhang C; Wisniewski C; Zhou Q
    Water Res; 2010 Jun; 44(11):3329-36. PubMed ID: 20371095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkaline fermentation of waste activated sludge with calcium hydroxide to improve short-chain fatty acids production and extraction efficiency via layered double hydroxides.
    Ma X; Ye J; Jiang L; Sheng L; Liu J; Li YY; Xu ZP
    Bioresour Technol; 2019 May; 279():117-123. PubMed ID: 30716603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolysis and acidification of waste activated sludge at different pHs.
    Chen Y; Jiang S; Yuan H; Zhou Q; Gu G
    Water Res; 2007 Feb; 41(3):683-9. PubMed ID: 16987541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing anaerobic digestion of waste activated sludge by the combined use of NaOH and Mg(OH)2: Performance evaluation and mechanism study.
    Huang C; Lai J; Sun X; Li J; Shen J; Han W; Wang L
    Bioresour Technol; 2016 Nov; 220():601-608. PubMed ID: 27619711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic-pretreated waste activated sludge hydrolysis and volatile fatty acid accumulation under alkaline conditions: Effect of temperature.
    Zhuo G; Yan Y; Tan X; Dai X; Zhou Q
    J Biotechnol; 2012 May; 159(1-2):27-31. PubMed ID: 22342599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH.
    Liu H; Wang J; Liu X; Fu B; Chen J; Yu HQ
    Water Res; 2012 Mar; 46(3):799-807. PubMed ID: 22176743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids.
    Ucisik AS; Henze M
    Water Res; 2008 Aug; 42(14):3729-38. PubMed ID: 18703214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward understanding the mechanism of improving the production of volatile fatty acids from activated sludge at pH 10.0.
    Yu GH; He PJ; Shao LM; He PP
    Water Res; 2008 Nov; 42(18):4637-44. PubMed ID: 18822441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method.
    Doğan I; Sanin FD
    Water Res; 2009 May; 43(8):2139-48. PubMed ID: 19285332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined treatment of alkaline and disperser for improving solubilization and anaerobic biodegradability of dairy waste activated sludge.
    Uma Rani R; Kaliappan S; Adish Kumar S; Rajesh Banu J
    Bioresour Technol; 2012 Dec; 126():107-16. PubMed ID: 23073096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH.
    Zhang P; Chen Y; Zhou Q
    Water Res; 2009 Aug; 43(15):3735-42. PubMed ID: 19555988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants.
    Morgan-Sagastume F; Pratt S; Karlsson A; Cirne D; Lant P; Werker A
    Bioresour Technol; 2011 Feb; 102(3):3089-97. PubMed ID: 21075621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolysis and acidification of dewatered sludge under mesophilic, thermophilic and extreme thermophilic conditions: effect of pH.
    Liu X; Dong B; Dai X
    Bioresour Technol; 2013 Nov; 148():461-6. PubMed ID: 24077155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VFA generation from waste activated sludge: effect of temperature and mixing.
    Yuan Q; Sparling R; Oleszkiewicz JA
    Chemosphere; 2011 Jan; 82(4):603-7. PubMed ID: 21075416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.