BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 23567690)

  • 21. Improving microalgal growth with small bubbles in a raceway pond with swing gas aerators.
    Yang Z; Cheng J; Liu J; Zhou J; Cen K
    Bioresour Technol; 2016 Sep; 216():267-72. PubMed ID: 27243604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling anaerobic digestion of microalgae using ADM1.
    Mairet F; Bernard O; Ras M; Lardon L; Steyer JP
    Bioresour Technol; 2011 Jul; 102(13):6823-9. PubMed ID: 21536430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation on novel raceway pond with inclined paddle wheels through simulation and microalgae culture experiments.
    Zeng F; Huang J; Meng C; Zhu F; Chen J; Li Y
    Bioprocess Biosyst Eng; 2016 Jan; 39(1):169-80. PubMed ID: 26563485
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.
    Cheah WY; Show PL; Chang JS; Ling TC; Juan JC
    Bioresour Technol; 2015 May; 184():190-201. PubMed ID: 25497054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of carbon dioxide supply in raceway reactors: Influence of carbon dioxide molar fraction and gas flow rate.
    Duarte-Santos T; Mendoza-Martín JL; Acién Fernández FG; Molina E; Vieira-Costa JA; Heaven S
    Bioresour Technol; 2016 Jul; 212():72-81. PubMed ID: 27085148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer.
    Putt R; Singh M; Chinnasamy S; Das KC
    Bioresour Technol; 2011 Feb; 102(3):3240-5. PubMed ID: 21123050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide.
    Liu X; Ying K; Chen G; Zhou C; Zhang W; Zhang X; Cai Z; Holmes T; Tao Y
    Chemosphere; 2017 Nov; 186():977-985. PubMed ID: 28835006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maximizing CO
    Wang Z; Wen X; Xu Y; Ding Y; Geng Y; Li Y
    Sci Total Environ; 2018 Apr; 619-620():827-833. PubMed ID: 29734628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions.
    Hwang JH; Kim HC; Choi JA; Abou-Shanab RA; Dempsey BA; Regan JM; Kim JR; Song H; Nam IH; Kim SN; Lee W; Park D; Kim Y; Choi J; Ji MK; Jung W; Jeon BH
    Nat Commun; 2014; 5():3234. PubMed ID: 24492668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Irradiance penetration distribution and flashing light frequency simultaneously affected with microalgal cell absorption and CO
    Song Y; Cheng J; Yang Y; Gao Z
    Sci Total Environ; 2023 Mar; 864():160988. PubMed ID: 36535475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.
    Yadav G; Karemore A; Dash SK; Sen R
    Bioresour Technol; 2015 Sep; 191():399-406. PubMed ID: 25921786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Air-water fluxes of N₂O and CH₄ during microalgae (Staurosira sp.) cultivation in an open raceway pond.
    Ferrón S; Ho DT; Johnson ZI; Huntley ME
    Environ Sci Technol; 2012 Oct; 46(19):10842-8. PubMed ID: 22920714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of Chlorella vulgaris biomass productivity cultivated in biofilm and suspension from the aspect of light transmission and microalgae affinity to carbon dioxide.
    Huang Y; Xiong W; Liao Q; Fu Q; Xia A; Zhu X; Sun Y
    Bioresour Technol; 2016 Dec; 222():367-373. PubMed ID: 27741475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Installation of flow deflectors and wing baffles to reduce dead zone and enhance flashing light effect in an open raceway pond.
    Zhang Q; Xue S; Yan C; Wu X; Wen S; Cong W
    Bioresour Technol; 2015 Dec; 198():150-6. PubMed ID: 26386417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced carbon dioxide fixation of Chlorella vulgaris in microalgae reactor loaded with nanofiber membrane carried iron oxide nanoparticles.
    Ren H; Ni J; Shen M; Zhou D; Sun F; Loke Show P
    Bioresour Technol; 2023 Aug; 382():129176. PubMed ID: 37187334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater.
    Hu X; Zhou J; Liu G; Gui B
    J Environ Sci (China); 2016 Aug; 46():83-91. PubMed ID: 27521939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Progress in biofixation of CO2 from combustion flue gas by microalgae].
    Zhang Y; Zhao B; Xiong K; Zhang Z; Hao X; Liu T
    Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):164-71. PubMed ID: 21650040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heavy metal control in microalgae cultivation with power plant flue gas entering into raceway pond.
    Sun J; Cheng J; Yang Z; Zhou J
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):37357-37362. PubMed ID: 32144702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microalgal growth, nitrogen uptake and storage, and dissolved oxygen production in a polyculture based-open pond fed with municipal wastewater in northern Sweden.
    Lage S; Toffolo A; Gentili FG
    Chemosphere; 2021 Aug; 276():130122. PubMed ID: 33690042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Innovative nanofiber technology to improve carbon dioxide biofixation in microalgae cultivation.
    Vaz BDS; Costa JAV; Morais MG
    Bioresour Technol; 2019 Feb; 273():592-598. PubMed ID: 30481658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.