BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 23567690)

  • 41. Biological CO
    de Morais MG; de Morais EG; Duarte JH; Deamici KM; Mitchell BG; Costa JAV
    World J Microbiol Biotechnol; 2019 May; 35(5):78. PubMed ID: 31087167
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Challenges and opportunities for microalgae-mediated CO2 capture and biorefinery.
    Seth JR; Wangikar PP
    Biotechnol Bioeng; 2015 Jul; 112(7):1281-96. PubMed ID: 25899427
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The impact of environmental factors on carbon dioxide fixation by microalgae.
    Morales M; Sánchez L; Revah S
    FEMS Microbiol Lett; 2018 Feb; 365(3):. PubMed ID: 29228188
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An overview of biological processes and their potential for CO2 capture.
    Goli A; Shamiri A; Talaiekhozani A; Eshtiaghi N; Aghamohammadi N; Aroua MK
    J Environ Manage; 2016 Dec; 183():41-58. PubMed ID: 27576148
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Advances on CO2 fixation by microalgae].
    Cheng LH; Zhang L; Chen HL; Gao CJ
    Sheng Wu Gong Cheng Xue Bao; 2005 Mar; 21(2):177-81. PubMed ID: 16013471
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comprehensive approach to improving life-cycle CO
    Choi HI; Hwang SW; Sim SJ
    Bioresour Technol; 2019 Nov; 291():121879. PubMed ID: 31377048
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation.
    Solovchenko A; Khozin-Goldberg I
    Biotechnol Lett; 2013 Nov; 35(11):1745-52. PubMed ID: 23801125
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review.
    Huang G; Chen F; Kuang Y; He H; Qin A
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1220-38. PubMed ID: 26695777
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent advances in CO
    Xu P; Li J; Qian J; Wang B; Liu J; Xu R; Chen P; Zhou W
    Chemosphere; 2023 Apr; 319():137987. PubMed ID: 36720412
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Perspectives on microalgal CO₂-emission mitigation systems--a review.
    Ho SH; Chen CY; Lee DJ; Chang JS
    Biotechnol Adv; 2011; 29(2):189-98. PubMed ID: 21094248
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification.
    Rossi F; Olguín EJ; Diels L; De Philippis R
    N Biotechnol; 2015 Jan; 32(1):109-20. PubMed ID: 24355428
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Algal remediation of CO₂ and nutrient discharges: A review.
    Judd S; van den Broeke LJ; Shurair M; Kuti Y; Znad H
    Water Res; 2015 Dec; 87():356-66. PubMed ID: 26451978
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of microclimate and shading effects of microalgal photobioreactors on rooftops: Microalgae as a promising emergent for green roof technology.
    Kumar S; Ali Kubar A; Sobhi M; Cui Y; Liu W; Hu X; Zhu F; Huo S
    Bioresour Technol; 2024 Feb; 394():130209. PubMed ID: 38135224
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photo-bioreactor design for microalgae: A review from the aspect of CO
    Fu J; Huang Y; Liao Q; Xia A; Fu Q; Zhu X
    Bioresour Technol; 2019 Nov; 292():121947. PubMed ID: 31466821
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal?
    Acién Fernández FG; González-López CV; Fernández Sevilla JM; Molina Grima E
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):577-86. PubMed ID: 22923096
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The contamination and control of biological pollutants in mass cultivation of microalgae.
    Wang H; Zhang W; Chen L; Wang J; Liu T
    Bioresour Technol; 2013 Jan; 128():745-50. PubMed ID: 23186675
    [TBL] [Abstract][Full Text] [Related]  

  • 57. From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances.
    Wilhelm C; Jakob T
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):909-19. PubMed ID: 22005740
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments.
    Apel AC; Weuster-Botz D
    Bioprocess Biosyst Eng; 2015 Jun; 38(6):995-1008. PubMed ID: 25627468
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of thin-layer cascades for microalgae cultivation: milestones (review).
    Grivalský T; Ranglová K; da Câmara Manoel JA; Lakatos GE; Lhotský R; Masojídek J
    Folia Microbiol (Praha); 2019 Sep; 64(5):603-614. PubMed ID: 31359261
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic and cellular organization in evolutionarily diverse microalgae as related to biofuels production.
    Hildebrand M; Abbriano RM; Polle JE; Traller JC; Trentacoste EM; Smith SR; Davis AK
    Curr Opin Chem Biol; 2013 Jun; 17(3):506-14. PubMed ID: 23538202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.