These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 23567710)

  • 1. Enhanced bioremediation of heavy metal from effluent by sulfate-reducing bacteria with copper-iron bimetallic particles support.
    Zhou Q; Chen Y; Yang M; Li W; Deng L
    Bioresour Technol; 2013 May; 136():413-7. PubMed ID: 23567710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron.
    Bai H; Kang Y; Quan H; Han Y; Sun J; Feng Y
    J Environ Manage; 2013 Nov; 129():350-6. PubMed ID: 23981707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient removal of Cu(II), Zn(II), Ni(II) and Fe(II) from electroplating wastewater using sulphide from sulphidogenic bioreactor effluent.
    Fang D; Zhang R; Deng W; Li J
    Environ Technol; 2012; 33(13-15):1709-15. PubMed ID: 22988632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Treating Cr(VI)-containing wastewater by a consortium of sulfate reducing bacteria and copper-iron bimetallic particles].
    He QZ; Chen H; Wang D; Li H; Ding XH; Deng L
    Huan Jing Ke Xue; 2011 Jul; 32(7):2000-5. PubMed ID: 21922821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria.
    Kieu HT; Müller E; Horn H
    Water Res; 2011 Jul; 45(13):3863-70. PubMed ID: 21632086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide.
    Sahinkaya E; Gungor M; Bayrakdar A; Yucesoy Z; Uyanik S
    J Hazard Mater; 2009 Nov; 171(1-3):901-6. PubMed ID: 19608339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of sulfidogenic anaerobic baffled reactor (ABR) treating acidic and zinc-containing wastewater.
    Bayrakdar A; Sahinkaya E; Gungor M; Uyanik S; Atasoy AD
    Bioresour Technol; 2009 Oct; 100(19):4354-60. PubMed ID: 19428238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50.
    Utgikar VP; Chen BY; Chaudhary N; Tabak HH; Haines JR; Govind R
    Environ Toxicol Chem; 2001 Dec; 20(12):2662-9. PubMed ID: 11764146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs.
    Jong T; Parry DL
    Water Res; 2003 Aug; 37(14):3379-89. PubMed ID: 12834731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of toxic and inhibitory impact of copper and zinc on mixed cultures of sulfate-reducing bacteria.
    Utgikar VP; Tabak HH; Haines JR; Govind R
    Biotechnol Bioeng; 2003 May; 82(3):306-12. PubMed ID: 12599257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous sulfate reduction and copper removal by a PVA-immobilized sulfate reducing bacterial culture.
    Hsu HF; Jhuo YS; Kumar M; Ma YS; Lin JG
    Bioresour Technol; 2010 Jun; 101(12):4354-61. PubMed ID: 20153634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination.
    Martins M; Faleiro ML; Barros RJ; Veríssimo AR; Barreiros MA; Costa MC
    J Hazard Mater; 2009 Jul; 166(2-3):706-13. PubMed ID: 19135795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acid tolerance of an acid mine drainage bioremediation system based on biological sulfate reduction.
    Lu J; Chen T; Wu J; Wilson PC; Hao X; Qian J
    Bioresour Technol; 2011 Nov; 102(22):10401-6. PubMed ID: 21967711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron.
    Guo J; Kang Y; Feng Y
    J Environ Manage; 2017 Dec; 203(Pt 1):278-285. PubMed ID: 28803152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioaugmented sulfate reduction using enriched anaerobic microflora in the presence of zero valent iron.
    Xin Y; Yong K; Duujong L; Ying F
    Chemosphere; 2008 Nov; 73(9):1436-41. PubMed ID: 18840389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metals in a constructed wetland treating industrial wastewater: distribution in the sediment and rhizome tissue.
    Domingos S; Dallas S; Germain M; Ho G
    Water Sci Technol; 2009; 60(6):1425-32. PubMed ID: 19759445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosorption of heavy metal ions (Cu(2+), Mn (2+), Zn (2+), and Fe (3+)) from aqueous solutions using activated sludge: comparison of aerobic activated sludge with anaerobic activated sludge.
    Wu Y; Zhou J; Wen Y; Jiang L; Wu Y
    Appl Biochem Biotechnol; 2012 Dec; 168(8):2079-93. PubMed ID: 23065403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria.
    Hwang SK; Jho EH
    Sci Total Environ; 2018 Sep; 635():1308-1316. PubMed ID: 29710584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper.
    Miran W; Jang J; Nawaz M; Shahzad A; Jeong SE; Jeon CO; Lee DS
    Chemosphere; 2017 Dec; 189():134-142. PubMed ID: 28934653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system.
    Ma LM; Ding ZG; Gao TY; Zhou RF; Xu WY; Liu J
    Chemosphere; 2004 Jun; 55(9):1207-12. PubMed ID: 15081761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.