These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23567720)

  • 21. Screening of a microbial consortium for highly simultaneous degradation of lignocellulose and chlorophenols.
    Liang J; Peng X; Yin D; Li B; Wang D; Lin Y
    Bioresour Technol; 2015 Aug; 190():381-7. PubMed ID: 25974352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Newly isolated and characterized bacteria with great application potential for decomposition of lignocellulosic biomass.
    Maki ML; Idrees A; Leung KT; Qin W
    J Mol Microbiol Biotechnol; 2012; 22(3):156-66. PubMed ID: 22832891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous volatile fatty acid production from lignocellulosic biomass by a novel rumen-mimetic bioprocess.
    Agematu H; Takahashi T; Hamano Y
    J Biosci Bioeng; 2017 Nov; 124(5):528-533. PubMed ID: 28690158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mining of hemicellulose and lignin degrading genes from differentially enriched methane producing microbial community.
    Pandit PD; Gulhane MK; Khardenavis AA; Purohit HJ
    Bioresour Technol; 2016 Sep; 216():923-30. PubMed ID: 27323244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new screened microbial consortium OEM2 for lignocellulosic biomass deconstruction and chlorophenols detoxification.
    Liang J; Fang X; Lin Y; Wang D
    J Hazard Mater; 2018 Apr; 347():341-348. PubMed ID: 29335216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradation of cellulosic and lignocellulosic waste by Pseudoxanthomonas sp R-28.
    Kumar M; Revathi K; Khanna S
    Carbohydr Polym; 2015 Dec; 134():761-6. PubMed ID: 26428183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of pretreatment by a microbial consortium on methane production of waste paper and cardboard.
    Yuan X; Cao Y; Li J; Wen B; Zhu W; Wang X; Cui Z
    Bioresour Technol; 2012 Aug; 118():281-8. PubMed ID: 22705535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison and evaluation of concurrent saccharification and anaerobic digestion of Napier grass after pretreatment by three microbial consortia.
    Wen B; Yuan X; Li QX; Liu J; Ren J; Wang X; Cui Z
    Bioresour Technol; 2015 Jan; 175():102-11. PubMed ID: 25459810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enrichment of thermophilic and mesophilic microbial consortia for efficient degradation of corn stalk.
    Lu J; Yang Z; Xu W; Shi X; Guo R
    J Environ Sci (China); 2019 Apr; 78():118-126. PubMed ID: 30665630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Capability and stability of degrading rice straw of composite microbial system MC1].
    Wang WD; Cui ZJ; Wang XF; Niu JL; Liu JB; Igarashi Y
    Huan Jing Ke Xue; 2005 Sep; 26(5):156-60. PubMed ID: 16366490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing the anaerobic digestion of corn stalks using composite microbial pretreatment.
    Yuan X; Li P; Wang H; Wang X; Cheng X; Cui Z
    J Microbiol Biotechnol; 2011 Jul; 21(7):746-52. PubMed ID: 21791962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of anaerobic consortia coupled lignin depolymerization with biomethane generation.
    Wu YR; He J
    Bioresour Technol; 2013 Jul; 139():5-12. PubMed ID: 23639408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of lignocellulolytic enzymes produced under solid state cultivation conditions.
    Deswal D; Sharma A; Gupta R; Kuhad RC
    Bioresour Technol; 2012 Jul; 115():249-54. PubMed ID: 22067437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and microbial community shifts of rice strawdegrading microbial consortia.
    Wang C; Ma S; Huang Y; Liu L; Fan H; Deng Y
    Wei Sheng Wu Xue Bao; 2016 Dec; 56(12):1856-68. PubMed ID: 29741851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Construction of a microbial consortium RXS with high degradation ability for cassava residues and studies on its fermentative characteristics].
    He J; Mao ZG; Zhang QH; Zhang JH; Tang L; Zhang HJ
    Huan Jing Ke Xue; 2012 Mar; 33(3):1020-7. PubMed ID: 22624403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of different pretreatment strategies on corn stalk acidogenic fermentation using a microbial consortium.
    Guo P; Mochidzuki K; Cheng W; Zhou M; Gao H; Zheng D; Wang X; Cui Z
    Bioresour Technol; 2011 Aug; 102(16):7526-31. PubMed ID: 21624832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diversity of a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas production.
    Yan L; Gao Y; Wang Y; Liu Q; Sun Z; Fu B; Wen X; Cui Z; Wang W
    Bioresour Technol; 2012 May; 111():49-54. PubMed ID: 22365718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of an Anaerobic, Thermophilic, Alkaliphilic, High Lignocellulosic Biomass-Degrading Bacterial Community, ISHI-3, Isolated from Biocompost.
    Shikata A; Sermsathanaswadi J; Thianheng P; Baramee S; Tachaapaikoon C; Waeonukul R; Pason P; Ratanakhanokchai K; Kosugi A
    Enzyme Microb Technol; 2018 Nov; 118():66-75. PubMed ID: 30143202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-function elucidation of a microbial consortium in degrading rice straw and producing acetic and butyric acids via metagenome combining 16S rDNA sequencing.
    Pan Y; Zheng X; Xiang Y
    Bioresour Technol; 2021 Nov; 340():125709. PubMed ID: 34375790
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].
    Li HY; Li SN; Wang SX; Wang Q; Xue YY; Zhu BC
    Ying Yong Sheng Tai Xue Bao; 2015 May; 26(5):1404-10. PubMed ID: 26571658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.