These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 23567729)
1. Selection of the best chemical pretreatment for lignocellulosic substrate Prosopis juliflora. Naseeruddin S; Srilekha Yadav K; Sateesh L; Manikyam A; Desai S; Venkateswar Rao L Bioresour Technol; 2013 May; 136():542-9. PubMed ID: 23567729 [TBL] [Abstract][Full Text] [Related]
2. Selection of suitable mineral acid and its concentration for biphasic dilute acid hydrolysis of the sodium dithionite delignified Prosopis juliflora to hydrolyze maximum holocellulose. Naseeruddin S; Desai S; Venkateswar Rao L Bioresour Technol; 2016 Feb; 202():231-7. PubMed ID: 26716889 [TBL] [Abstract][Full Text] [Related]
3. Combined alkali and acid pretreatment of spent mushroom substrate for reducing sugar and biofertilizer production. Zhu HJ; Liu JH; Sun LF; Hu ZF; Qiao JJ Bioresour Technol; 2013 May; 136():257-66. PubMed ID: 23567689 [TBL] [Abstract][Full Text] [Related]
4. Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Gupta R; Mehta G; Khasa YP; Kuhad RC Biodegradation; 2011 Jul; 22(4):797-804. PubMed ID: 20711746 [TBL] [Abstract][Full Text] [Related]
5. Comparison of bamboo green, timber and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification. Li Z; Jiang Z; Fei B; Cai Z; Pan X Bioresour Technol; 2014 Jan; 151():91-9. PubMed ID: 24212128 [TBL] [Abstract][Full Text] [Related]
6. Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation. Kuhad RC; Gupta R; Khasa YP; Singh A Bioresour Technol; 2010 Nov; 101(21):8348-54. PubMed ID: 20584600 [TBL] [Abstract][Full Text] [Related]
7. Pretreatment of Agave americana stalk for enzymatic saccharification. Yang Q; Pan X Bioresour Technol; 2012 Dec; 126():336-40. PubMed ID: 23122484 [TBL] [Abstract][Full Text] [Related]
8. Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Kuhar S; Nair LM; Kuhad RC Can J Microbiol; 2008 Apr; 54(4):305-13. PubMed ID: 18389003 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of pretreatment methods for enzymatic saccharification of wheat straw for bioethanol production. Govumoni SP; Koti S; Kothagouni SY; Venkateshwar S; Linga VR Carbohydr Polym; 2013 Jan; 91(2):646-50. PubMed ID: 23121959 [TBL] [Abstract][Full Text] [Related]
10. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Gupta R; Sharma KK; Kuhad RC Bioresour Technol; 2009 Feb; 100(3):1214-20. PubMed ID: 18835157 [TBL] [Abstract][Full Text] [Related]
11. Effect of anatomical fractionation on the enzymatic hydrolysis of acid and alkaline pretreated corn stover. Duguid KB; Montross MD; Radtke CW; Crofcheck CL; Wendt LM; Shearer SA Bioresour Technol; 2009 Nov; 100(21):5189-95. PubMed ID: 19560347 [TBL] [Abstract][Full Text] [Related]
13. Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber. Kim S; Park JM; Seo JW; Kim CH Bioresour Technol; 2012 Apr; 109():229-33. PubMed ID: 22306078 [TBL] [Abstract][Full Text] [Related]
14. Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol. Persson P; Andersson J; Gorton L; Larsson S; Nilvebrant NO; Jönsson LJ J Agric Food Chem; 2002 Sep; 50(19):5318-25. PubMed ID: 12207468 [TBL] [Abstract][Full Text] [Related]
15. Optimization of alkali pretreatment and enzymatic saccharification of jute (Corchorus olitorius L.) biomass using response surface methodology. Sharma L; Alam NM; Roy S; Satya P; Kar G; Ghosh S; Goswami T; Majumdar B Bioresour Technol; 2023 Jan; 368():128318. PubMed ID: 36375701 [TBL] [Abstract][Full Text] [Related]
16. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Silverstein RA; Chen Y; Sharma-Shivappa RR; Boyette MD; Osborne J Bioresour Technol; 2007 Nov; 98(16):3000-11. PubMed ID: 17158046 [TBL] [Abstract][Full Text] [Related]
17. Influence of twin-screw extrusion on soluble arabinoxylans and corn fiber gum from corn fiber. Singkhornart S; Lee SG; Ryu GH J Sci Food Agric; 2013 Sep; 93(12):3046-54. PubMed ID: 23526265 [TBL] [Abstract][Full Text] [Related]
18. Influence of dilute acid and alkali pretreatment on reducing sugar production from corncobs by crude enzymatic method: a comparative study. Baadhe RR; Potumarthi R; Mekala NK Bioresour Technol; 2014 Jun; 162():213-7. PubMed ID: 24755319 [TBL] [Abstract][Full Text] [Related]
19. Alkaline and alkaline peroxide pretreatments at mild temperature to enhance enzymatic hydrolysis of rice hulls and straw. Cabrera E; Muñoz MJ; Martín R; Caro I; Curbelo C; Díaz AB Bioresour Technol; 2014 Sep; 167():1-7. PubMed ID: 24952164 [TBL] [Abstract][Full Text] [Related]
20. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment. He X; Miao Y; Jiang X; Xu Z; Ouyang P Appl Biochem Biotechnol; 2010 Apr; 160(8):2449-57. PubMed ID: 19669940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]