BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 23567799)

  • 1. Fatty acid binding to serum albumin: molecular simulation approaches.
    Fujiwara S; Amisaki T
    Biochim Biophys Acta; 2013 Dec; 1830(12):5427-34. PubMed ID: 23567799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steric and allosteric effects of fatty acids on the binding of warfarin to human serum albumin revealed by molecular dynamics and free energy calculations.
    Fujiwara S; Amisaki T
    Chem Pharm Bull (Tokyo); 2011; 59(7):860-7. PubMed ID: 21720037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics study of conformational changes in human serum albumin by binding of fatty acids.
    Fujiwara S; Amisaki T
    Proteins; 2006 Aug; 64(3):730-9. PubMed ID: 16783783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel insights into the pleiotropic effects of human serum albumin in health and disease.
    Ha CE; Bhagavan NV
    Biochim Biophys Acta; 2013 Dec; 1830(12):5486-93. PubMed ID: 23602811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of high affinity fatty acid binding sites on human serum albumin by MM-PBSA method.
    Fujiwara S; Amisaki T
    Biophys J; 2008 Jan; 94(1):95-103. PubMed ID: 17827235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR reveals molecular interactions and dynamics of fatty acid binding to albumin.
    Hamilton JA
    Biochim Biophys Acta; 2013 Dec; 1830(12):5418-26. PubMed ID: 23939311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty Acids Compete with Aβ in Binding to Serum Albumin by Quenching Its Conformational Flexibility.
    Guo C; Zhou HX
    Biophys J; 2019 Jan; 116(2):248-257. PubMed ID: 30580919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis.
    Simard JR; Zunszain PA; Hamilton JA; Curry S
    J Mol Biol; 2006 Aug; 361(2):336-51. PubMed ID: 16844140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration of human serum albumin binding sites by docking and molecular dynamics flexible ligand-protein interactions.
    Deeb O; Rosales-Hernández MC; Gómez-Castro C; Garduño-Juárez R; Correa-Basurto J
    Biopolymers; 2010 Feb; 93(2):161-70. PubMed ID: 19785033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correspondence of fatty acid and drug binding sites on human serum albumin: a two-dimensional nuclear magnetic resonance study.
    Krenzel ES; Chen Z; Hamilton JA
    Biochemistry; 2013 Mar; 52(9):1559-67. PubMed ID: 23360066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using bound fatty acids to disclose the functional structure of serum albumin.
    Reichenwallner J; Hinderberger D
    Biochim Biophys Acta; 2013 Dec; 1830(12):5382-93. PubMed ID: 23643928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined docking, molecular dynamics simulations and spectroscopic studies for the rational design of a dipeptide ligand for affinity chromatography separation of human serum albumin.
    Aghaee E; Ghasemi JB; Manouchehri F; Balalaie S
    J Mol Model; 2014 Oct; 20(10):2446. PubMed ID: 25220335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long chain fatty acids alter the interactive binding of ligands to the two principal drug binding sites of human serum albumin.
    Yamasaki K; Hyodo S; Taguchi K; Nishi K; Yamaotsu N; Hirono S; Chuang VTG; Seo H; Maruyama T; Otagiri M
    PLoS One; 2017; 12(6):e0180404. PubMed ID: 28662200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the effects of two bound glucose in Sudlow site I on structure and function of human serum albumin: theoretical studies.
    Awang T; Wiriyatanakorn N; Saparpakorn P; Japrung D; Pongprayoon P
    J Biomol Struct Dyn; 2017 Mar; 35(4):781-790. PubMed ID: 26942862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that Chemical Chaperone 4-Phenylbutyric Acid Binds to Human Serum Albumin at Fatty Acid Binding Sites.
    Roy D; Kumar V; James J; Shihabudeen MS; Kulshrestha S; Goel V; Thirumurugan K
    PLoS One; 2015; 10(7):e0133012. PubMed ID: 26181488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding modes of flavones to human serum albumin: insights from experimental and computational studies.
    Liu H; Bao W; Ding H; Jang J; Zou G
    J Phys Chem B; 2010 Oct; 114(40):12938-47. PubMed ID: 20845951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatographic analysis of the effects of fatty acids and glycation on binding by probes for Sudlow sites I and II to human serum albumin.
    Anguizola J; Debolt E; Suresh D; Hage DS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 May; 1021():175-181. PubMed ID: 26468085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spectroscopic study of the interaction of isoflavones with human serum albumin.
    Mahesha HG; Singh SA; Srinivasan N; Rao AG
    FEBS J; 2006 Feb; 273(3):451-67. PubMed ID: 16420470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Influence of Fatty Acids on Metoprolol - Human Serum Albumin Interaction in Low Affinity Binding Sites: A Multifactorial NMR Approach.
    Szkudlarek A; Mogielnicki M; Pentak D; Ploch A; Maciazek-Jurczyk M
    Protein Pept Lett; 2018; 25(3):285-294. PubMed ID: 29336242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combined spectroscopic, docking and molecular dynamics simulation approach to probing binding of a Schiff base complex to human serum albumin.
    Fani N; Bordbar AK; Ghayeb Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():11-7. PubMed ID: 23228826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.