These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 23567881)

  • 1. Anatomical MRI with an atomic magnetometer.
    Savukov I; Karaulanov T
    J Magn Reson; 2013 Jun; 231():39-45. PubMed ID: 23567881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRI with an atomic magnetometer suitable for practical imaging applications.
    Savukov IM; Zotev VS; Volegov PL; Espy MA; Matlashov AN; Gomez JJ; Kraus RH
    J Magn Reson; 2009 Aug; 199(2):188-91. PubMed ID: 19435672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of NMR signals with a radio-frequency atomic magnetometer.
    Savukov IM; Seltzer SJ; Romalis MV
    J Magn Reson; 2007 Apr; 185(2):214-20. PubMed ID: 17208476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-cryogenic anatomical imaging in ultra-low field regime: hand MRI demonstration.
    Savukov I; Karaulanov T; Castro A; Volegov P; Matlashov A; Urbatis A; Gomez J; Espy M
    J Magn Reson; 2011 Aug; 211(2):101-8. PubMed ID: 21700482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 12-channel receive array with a volume transmit coil for hand/wrist imaging at 7 T.
    Raghuraman S; Mueller MF; Zbýň Š; Baer P; Breuer FA; Friedrich KM; Trattnig S; Lanz T; Jakob PM
    J Magn Reson Imaging; 2013 Jul; 38(1):238-44. PubMed ID: 23239405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-optical magnetometry for NMR detection in a micro-Tesla field and unshielded environment.
    Bevilacqua G; Biancalana V; Dancheva Y; Moi L
    J Magn Reson; 2009 Dec; 201(2):222-9. PubMed ID: 19828344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SQUID-detected magnetic resonance imaging in microtesla fields.
    Clarke J; Hatridge M; Mössle M
    Annu Rev Biomed Eng; 2007; 9():389-413. PubMed ID: 17328671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SQUID-sensor-based ultra-low-field MRI calibration with phantom images: towards quantitative imaging.
    Dabek J; Vesanen PT; Zevenhoven KC; Nieminen JO; Sepponen R; Ilmoniemi RJ
    J Magn Reson; 2012 Nov; 224():22-31. PubMed ID: 23000977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip three dimensional microcoils for MRI at the microscale.
    Badilita V; Kratt K; Baxan N; Mohmmadzadeh M; Burger T; Weber H; Elverfeldt DV; Hennig J; Korvink JG; Wallrabe U
    Lab Chip; 2010 Jun; 10(11):1387-90. PubMed ID: 20407728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid polarizing field cycling in magnetic resonance imaging.
    Matter NI; Scott GC; Grafendorfer T; Macovski A; Conolly SM
    IEEE Trans Med Imaging; 2006 Jan; 25(1):84-93. PubMed ID: 16398417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo SNR in DENSE MRI; temporal and regional effects of field strength, receiver coil sensitivity and flip angle strategies.
    Sigfridsson A; Haraldsson H; Ebbers T; Knutsson H; Sakuma H
    Magn Reson Imaging; 2011 Feb; 29(2):202-8. PubMed ID: 21129876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical M(x) magnetometer.
    Schultze V; Ijsselsteijn R; Scholtes T; Woetzel S; Meyer HG
    Opt Express; 2012 Jun; 20(13):14201-12. PubMed ID: 22714483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise amplification in parallel whole-head ultra-low-field magnetic resonance imaging using 306 detectors.
    Lin FH; Vesanen PT; Nieminen JO; Hsu YC; Zevenhoven KC; Dabek J; Parkkonen LT; Zhdanov A; Ilmoniemi RJ
    Magn Reson Med; 2013 Aug; 70(2):595-600. PubMed ID: 23023497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting rotating magnetic fields using optically pumped atomic magnetometers for measuring ultra-low-field magnetic resonance signals.
    Oida T; Ito Y; Kamada K; Kobayashi T
    J Magn Reson; 2012 Apr; 217():6-9. PubMed ID: 22417784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dedicated two-channel phased-array receiver coil for high-resolution MRI of the rat knee cartilage at 7 T.
    Rengle A; Armenean M; Bolbos R; Goebel JC; Pinzano-Watrin A; Saint-Jalmes H; Gillet P; Beuf O
    IEEE Trans Biomed Eng; 2009 Dec; 56(12):2891-7. PubMed ID: 19932985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A subfemtotesla multichannel atomic magnetometer.
    Kominis IK; Kornack TW; Allred JC; Romalis MV
    Nature; 2003 Apr; 422(6932):596-9. PubMed ID: 12686995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multichannel system based on a high sensitivity superconductive sensor for magnetoencephalography.
    Rombetto S; Granata C; Vettoliere A; Russo M
    Sensors (Basel); 2014 Jul; 14(7):12114-26. PubMed ID: 25006995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxivity of gadolinium complexes detected by atomic magnetometry.
    Michalak DJ; Xu S; Lowery TJ; Crawford CW; Ledbetter M; Bouchard LS; Wemmer DE; Budker D; Pines A
    Magn Reson Med; 2011 Aug; 66(2):605-8. PubMed ID: 21433067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Faraday effect position sensor for interventional magnetic resonance imaging.
    Bock M; Umathum R; Sikora J; Brenner S; Aguor EN; Semmler W
    Phys Med Biol; 2006 Feb; 51(4):999-1009. PubMed ID: 16467592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal-to-noise ratio comparison of phased-array vs. implantable coil for rat spinal cord MRI.
    Yung AC; Kozlowski P
    Magn Reson Imaging; 2007 Oct; 25(8):1215-21. PubMed ID: 17905249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.