These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 23568028)
1. Cation recombination energy/coulomb repulsion effects in ETD/ECD as revealed by variation of charge per residue at fixed total charge. Mentinova M; Crizer DM; Baba T; McGee WM; Glish GL; McLuckey SA J Am Soc Mass Spectrom; 2013 Nov; 24(11):1676-89. PubMed ID: 23568028 [TBL] [Abstract][Full Text] [Related]
2. Effects of cation charge-site identity and position on electron-transfer dissociation of polypeptide cations. Xia Y; Gunawardena HP; Erickson DE; McLuckey SA J Am Chem Soc; 2007 Oct; 129(40):12232-43. PubMed ID: 17880074 [TBL] [Abstract][Full Text] [Related]
3. Electron capture dissociation mass spectrometry of peptide cations containing a lysine homologue: a mobile proton model for explaining the observation of b-type product ions. Lee S; Chung G; Kim J; Oh HB Rapid Commun Mass Spectrom; 2006; 20(21):3167-75. PubMed ID: 17016809 [TBL] [Abstract][Full Text] [Related]
4. The histidine effect. Electron transfer and capture cause different dissociations and rearrangements of histidine peptide cation-radicals. Turecek F; Chung TW; Moss CL; Wyer JA; Ehlerding A; Holm AI; Zettergren H; Nielsen SB; Hvelplund P; Chamot-Rooke J; Bythell B; Paizs B J Am Chem Soc; 2010 Aug; 132(31):10728-40. PubMed ID: 20681705 [TBL] [Abstract][Full Text] [Related]
5. Electron capture in charge-tagged peptides. Evidence for the role of excited electronic states. Chamot-Rooke J; Malosse C; Frison G; Turecek F J Am Soc Mass Spectrom; 2007 Dec; 18(12):2146-61. PubMed ID: 17951069 [TBL] [Abstract][Full Text] [Related]
6. Effects of charge state and cationizing agent on the electron capture dissociation of a peptide. Iavarone AT; Paech K; Williams ER Anal Chem; 2004 Apr; 76(8):2231-8. PubMed ID: 15080732 [TBL] [Abstract][Full Text] [Related]
7. Toward a general mechanism of electron capture dissociation. Syrstad EA; Turecek F J Am Soc Mass Spectrom; 2005 Feb; 16(2):208-24. PubMed ID: 15694771 [TBL] [Abstract][Full Text] [Related]
8. Difference of Electron Capture and Transfer Dissociation Mass Spectrometry on Ni(2+)-, Cu(2+)-, and Zn(2+)-Polyhistidine Complexes in the Absence of Remote Protons. Asakawa D; De Pauw E J Am Soc Mass Spectrom; 2016 Jul; 27(7):1165-75. PubMed ID: 27098412 [TBL] [Abstract][Full Text] [Related]
9. Negative-ion electron capture dissociation: radical-driven fragmentation of charge-increased gaseous peptide anions. Yoo HJ; Wang N; Zhuang S; Song H; Håkansson K J Am Chem Soc; 2011 Oct; 133(42):16790-3. PubMed ID: 21942568 [TBL] [Abstract][Full Text] [Related]
10. A mechanistic investigation of the enhanced cleavage at histidine in the gas-phase dissociation of protonated peptides. Tsaprailis G; Nair H; Zhong W; Kuppannan K; Futrell JH; Wysocki VH Anal Chem; 2004 Apr; 76(7):2083-94. PubMed ID: 15053674 [TBL] [Abstract][Full Text] [Related]
11. Electron Transfer Dissociation: Effects of Cation Charge State on Product Partitioning in Ion/Ion Electron Transfer to Multiply Protonated Polypeptides. Liu J; McLuckey SA Int J Mass Spectrom; 2012 Dec; 330-332():174-181. PubMed ID: 23264749 [TBL] [Abstract][Full Text] [Related]
12. Electron-transfer ion/ion reactions of doubly protonated peptides: effect of elevated bath gas temperature. Pitteri SJ; Chrisman PA; McLuckey SA Anal Chem; 2005 Sep; 77(17):5662-9. PubMed ID: 16131079 [TBL] [Abstract][Full Text] [Related]
13. Electron capture and transfer dissociation: Peptide structure analysis at different ion internal energy levels. Ben Hamidane H; Chiappe D; Hartmer R; Vorobyev A; Moniatte M; Tsybin YO J Am Soc Mass Spectrom; 2009 Apr; 20(4):567-75. PubMed ID: 19112028 [TBL] [Abstract][Full Text] [Related]
14. The effect of fixed charge modifications on electron capture dissociation. Li X; Cournoyer JJ; Lin C; O'Connor PB J Am Soc Mass Spectrom; 2008 Oct; 19(10):1514-26. PubMed ID: 18657441 [TBL] [Abstract][Full Text] [Related]
15. Characterization of amino acid side chain losses in electron capture dissociation. Cooper HJ; Hudgins RR; Håkansson K; Marshall AG J Am Soc Mass Spectrom; 2002 Mar; 13(3):241-9. PubMed ID: 11908804 [TBL] [Abstract][Full Text] [Related]
16. Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X) Tsiatsiani L; Giansanti P; Scheltema RA; van den Toorn H; Overall CM; Altelaar AF; Heck AJ J Proteome Res; 2017 Feb; 16(2):852-861. PubMed ID: 28111955 [TBL] [Abstract][Full Text] [Related]
17. Electron capture in spin-trap capped peptides. An experimental example of ergodic dissociation in peptide cation-radicals. Jones JW; Sasaki T; Goodlett DR; Turecek F J Am Soc Mass Spectrom; 2007 Mar; 18(3):432-44. PubMed ID: 17112737 [TBL] [Abstract][Full Text] [Related]
18. On performing simultaneous electron transfer dissociation and collision-induced dissociation on multiply protonated peptides in a linear ion trap. Campbell JL; Hager JW; Le Blanc JC J Am Soc Mass Spectrom; 2009 Sep; 20(9):1672-83. PubMed ID: 19539496 [TBL] [Abstract][Full Text] [Related]
19. N-Cα Bond Cleavage of Zinc-Polyhistidine Complexes in Electron Transfer Dissociation Mediated by Zwitterion Formation: Experimental Evidence and Theoretical Analysis of the Utah-Washington Model. Asakawa D; Yamashita A; Kawai S; Takeuchi T; Wada Y J Phys Chem B; 2016 Feb; 120(5):891-901. PubMed ID: 26673038 [TBL] [Abstract][Full Text] [Related]
20. Where does the electron go? Electron distribution and reactivity of peptide cation radicals formed by electron transfer in the gas phase. Turecek F; Chen X; Hao C J Am Chem Soc; 2008 Jul; 130(27):8818-33. PubMed ID: 18597436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]