BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23568185)

  • 1. Building Spatiotemporal Anatomical Models using Joint 4-D Segmentation, Registration, and Subject-Specific Atlas Estimation.
    Prastawa M; Awate SP; Gerig G
    Proc Workshop Math Methods Biomed Image Analysis; 2012; ():49-56. PubMed ID: 23568185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences.
    Liao S; Jia H; Wu G; Shen D;
    Neuroimage; 2012 Jan; 59(2):1275-89. PubMed ID: 21884801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel longitudinal atlas construction framework by groupwise registration of subject image sequences.
    Liao S; Jia H; Wu G; Shen D
    Inf Process Med Imaging; 2011; 22():283-95. PubMed ID: 21761664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic macaque brain segmentation based on 7T MRI.
    Zhao J; Chen W; Liu C; Gao Y; Chen X; Chen G; Xia L; Dai Y; Zhang X
    Magn Reson Imaging; 2022 Oct; 92():232-242. PubMed ID: 35842194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SEGMENTATION OF SERIAL MRI OF TBI PATIENTS USING PERSONALIZED ATLAS CONSTRUCTION AND TOPOLOGICAL CHANGE ESTIMATION.
    Wang B; Prastawa M; Awate SP; Irimia A; Chambers MC; Vespa PM; van Horn JD; Gerig G
    Proc IEEE Int Symp Biomed Imaging; 2012; ():1152-1155. PubMed ID: 23999192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable Joint Segmentation and Registration Framework for Infant Brain Images.
    Dong P; Wang L; Lin W; Shen D; Wu G
    Neurocomputing (Amst); 2017 Mar; 229():54-62. PubMed ID: 29416227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging.
    Bagci U; Foster B; Miller-Jaster K; Luna B; Dey B; Bishai WR; Jonsson CB; Jain S; Mollura DJ
    EJNMMI Res; 2013 Jul; 3(1):55. PubMed ID: 23879987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomical Attention Guided Deep Networks for ROI Segmentation of Brain MR Images.
    Sun L; Shao W; Zhang D; Liu M
    IEEE Trans Med Imaging; 2020 Jun; 39(6):2000-2012. PubMed ID: 31899417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic hippocampus segmentation of 7.0 Tesla MR images by combining multiple atlases and auto-context models.
    Kim M; Wu G; Li W; Wang L; Son YD; Cho ZH; Shen D
    Neuroimage; 2013 Dec; 83():335-45. PubMed ID: 23769921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neonatal brain image segmentation in longitudinal MRI studies.
    Shi F; Fan Y; Tang S; Gilmore JH; Lin W; Shen D
    Neuroimage; 2010 Jan; 49(1):391-400. PubMed ID: 19660558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation.
    Shi F; Yap PT; Fan Y; Gilmore JH; Lin W; Shen D
    Neuroimage; 2010 Jun; 51(2):684-93. PubMed ID: 20171290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning Spatiotemporal Probabilistic Atlas of Fetal Brains with Anatomically Constrained Registration Network.
    Pei Y; Chen L; Zhao F; Wu Z; Zhong T; Wang Y; Chen C; Wang L; Zhang H; Wang L; Li G
    Med Image Comput Comput Assist Interv; 2021; 12907():239-248. PubMed ID: 35128549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation.
    Habas PA; Kim K; Corbett-Detig JM; Rousseau F; Glenn OA; Barkovich AJ; Studholme C
    Neuroimage; 2010 Nov; 53(2):460-70. PubMed ID: 20600970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised segmentation, clustering, and groupwise registration of heterogeneous populations of brain MR images.
    Ribbens A; Hermans J; Maes F; Vandermeulen D; Suetens P
    IEEE Trans Med Imaging; 2014 Feb; 33(2):201-24. PubMed ID: 23797244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Atlas Based Methods in Brain MR Image Segmentation.
    Sun L; Zhang L; Zhang DQ
    Chin Med Sci J; 2019 Jun; 34(2):110-119. PubMed ID: 31315752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dense deformation field estimation for atlas-based segmentation of pathological MR brain images.
    Bach Cuadra M; De Craene M; Duay V; Macq B; Pollo C; Thiran JP
    Comput Methods Programs Biomed; 2006 Dec; 84(2-3):66-75. PubMed ID: 16979256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain Tissue Segmentation of Neonatal MR Images Using a Longitudinal Subject-specific Probabilistic Atlas.
    Shi F; Fan Y; Tang S; Gilmore J; Lin W; Shen D
    Proc SPIE Int Soc Opt Eng; 2009 Jan; 7259():. PubMed ID: 20414458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Atlas Segmentation of Anatomical Brain Structures Using Hierarchical Hypergraph Learning.
    Dong P; Guo Y; Gao Y; Liang P; Shi Y; Wu G
    IEEE Trans Neural Netw Learn Syst; 2020 Aug; 31(8):3061-3072. PubMed ID: 31502994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of group-specific, whole-brain atlas generation using Volume-based Template Estimation (VTE): application to normal and Alzheimer's populations.
    Zhang Y; Zhang J; Hsu J; Oishi K; Faria AV; Albert M; Miller MI; Mori S
    Neuroimage; 2014 Jan; 84():406-19. PubMed ID: 24051356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental change in regional brain structure over 7 months in early adolescence: comparison of approaches for longitudinal atlas-based parcellation.
    Sullivan EV; Pfefferbaum A; Rohlfing T; Baker FC; Padilla ML; Colrain IM
    Neuroimage; 2011 Jul; 57(1):214-224. PubMed ID: 21511039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.