These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23568277)

  • 1. A beta-complex statistical four body contact potential combined with a hydrogen bond statistical potential recognizes the correct native structure from protein decoy sets.
    Sánchez-González G; Kim JK; Kim DS; Garduño-Juárez R
    Proteins; 2013 Aug; 81(8):1420-33. PubMed ID: 23568277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinguishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all-atom force field and the Surface Generalized Born solvent model.
    Felts AK; Gallicchio E; Wallqvist A; Levy RM
    Proteins; 2002 Aug; 48(2):404-22. PubMed ID: 12112706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How well can we predict native contacts in proteins based on decoy structures and their energies?
    Zhu J; Zhu Q; Shi Y; Liu H
    Proteins; 2003 Sep; 52(4):598-608. PubMed ID: 12910459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved protein decoy set for testing energy functions for protein structure prediction.
    Tsai J; Bonneau R; Morozov AV; Kuhlman B; Rohl CA; Baker D
    Proteins; 2003 Oct; 53(1):76-87. PubMed ID: 12945051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Native atomic burials, supplemented by physically motivated hydrogen bond constraints, contain sufficient information to determine the tertiary structure of small globular proteins.
    Pereira de Araújo AF; Gomes AL; Bursztyn AA; Shakhnovich EI
    Proteins; 2008 Feb; 70(3):971-83. PubMed ID: 17847091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical significance of hierarchical multi-body potentials based on Delaunay tessellation and their application in sequence-structure alignment.
    Munson PJ; Singh RK
    Protein Sci; 1997 Jul; 6(7):1467-81. PubMed ID: 9232648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying native-like protein structures using physics-based potentials.
    Dominy BN; Brooks CL
    J Comput Chem; 2002 Jan; 23(1):147-60. PubMed ID: 11913380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A physical reference state unifies the structure-derived potential of mean force for protein folding and binding.
    Liu S; Zhang C; Zhou H; Zhou Y
    Proteins; 2004 Jul; 56(1):93-101. PubMed ID: 15162489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein refolding in silico with atom-based statistical potentials and conformational search using a simple genetic algorithm.
    Fang Q; Shortle D
    J Mol Biol; 2006 Jun; 359(5):1456-67. PubMed ID: 16678202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delaunay-based nonlocal interactions are sufficient and accurate in protein fold recognition.
    Mirzaie M; Sadeghi M
    Proteins; 2014 Mar; 82(3):415-23. PubMed ID: 24038726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Four-body contact potentials derived from two protein datasets to discriminate native structures from decoys.
    Feng Y; Kloczkowski A; Jernigan RL
    Proteins; 2007 Jul; 68(1):57-66. PubMed ID: 17393455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network properties of protein-decoy structures.
    Chatterjee S; Bhattacharyya M; Vishveshwara S
    J Biomol Struct Dyn; 2012; 29(6):606-22. PubMed ID: 22545992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absolute quality evaluation of protein model structures using statistical potentials with respect to the native and reference states.
    Shirota M; Ishida T; Kinoshita K
    Proteins; 2011 May; 79(5):1550-63. PubMed ID: 21365682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new pairwise folding potential based on improved decoy generation and side-chain packing.
    Loose C; Klepeis JL; Floudas CA
    Proteins; 2004 Feb; 54(2):303-14. PubMed ID: 14696192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized distance-dependent atom-pair-based potential DOOP for protein structure prediction.
    Chae MH; Krull F; Knapp EW
    Proteins; 2015 May; 83(5):881-90. PubMed ID: 25693513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft energy function and generic evolutionary method for discriminating native from nonnative protein conformations.
    Chiu YY; Hwang JK; Yang JM
    J Comput Chem; 2008 Jul; 29(9):1364-73. PubMed ID: 18181137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the structures of proteins with the UNRES force field, including dynamic formation and breaking of disulfide bonds.
    Czaplewski C; Oldziej S; Liwo A; Scheraga HA
    Protein Eng Des Sel; 2004 Jan; 17(1):29-36. PubMed ID: 14985535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A distance-dependent atomic knowledge-based potential and force for discrimination of native structures from decoys.
    Mirzaie M; Eslahchi C; Pezeshk H; Sadeghi M
    Proteins; 2009 Nov; 77(2):454-63. PubMed ID: 19452553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of the native from misfolded protein models with an energy function including implicit solvation.
    Lazaridis T; Karplus M
    J Mol Biol; 1999 May; 288(3):477-87. PubMed ID: 10329155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reduced protein model with accurate native-structure identification ability.
    Betancourt MR
    Proteins; 2003 Dec; 53(4):889-907. PubMed ID: 14635131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.