BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23568791)

  • 1. Assessment of higher order structure comparability in therapeutic proteins using nuclear magnetic resonance spectroscopy.
    Amezcua CA; Szabo CM
    J Pharm Sci; 2013 Jun; 102(6):1724-1733. PubMed ID: 23568791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR Spectroscopy for Protein Higher Order Structure Similarity Assessment in Formulated Drug Products.
    Wang D; Zhuo Y; Karfunkle M; Patil SM; Smith CJ; Keire DA; Chen K
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher-Order Structure Characterization of Pharmaceutical Proteins by 2D Nuclear Magnetic Resonance Methyl Fingerprinting.
    Haxholm GW; Petersen BO; Malmstrøm J
    J Pharm Sci; 2019 Sep; 108(9):3029-3035. PubMed ID: 31082403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2D J-correlated proton NMR experiments for structural fingerprinting of biotherapeutics.
    Brinson RG; Marino JP
    J Magn Reson; 2019 Oct; 307():106581. PubMed ID: 31499472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the higher order structure of Humira®, Remicade®, Avastin®, Rituxan®, Herceptin®, and Enbrel® by 2D-NMR fingerprinting.
    Hodgson DJ; Ghasriani H; Aubin Y
    J Pharm Biomed Anal; 2019 Jan; 163():144-152. PubMed ID: 30296716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Analytical Superiority of 1D NMR for Fingerprinting the Higher Order Structure of Protein Therapeutics Compared to Multidimensional NMR Methods.
    Poppe L; Jordan JB; Rogers G; Schnier PD
    Anal Chem; 2015 Jun; 87(11):5539-45. PubMed ID: 25929316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Natural Isotopic Abundance ¹H-¹³C- and ¹H-¹⁵N-Correlated Two-Dimensional NMR for Evaluation of the Structure of Protein Therapeutics.
    Arbogast LW; Brinson RG; Marino JP
    Methods Enzymol; 2016; 566():3-34. PubMed ID: 26791974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical lessons learned from selected therapeutic protein drug comparability studies.
    Federici M; Lubiniecki A; Manikwar P; Volkin DB
    Biologicals; 2013 May; 41(3):131-47. PubMed ID: 23146362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling adoption of 2D-NMR for the higher order structure assessment of monoclonal antibody therapeutics.
    Brinson RG; Marino JP; Delaglio F; Arbogast LW; Evans RM; Kearsley A; Gingras G; Ghasriani H; Aubin Y; Pierens GK; Jia X; Mobli M; Grant HG; Keizer DW; Schweimer K; Ståhle J; Widmalm G; Zartler ER; Lawrence CW; Reardon PN; Cort JR; Xu P; Ni F; Yanaka S; Kato K; Parnham SR; Tsao D; Blomgren A; Rundlöf T; Trieloff N; Schmieder P; Ross A; Skidmore K; Chen K; Keire D; Freedberg DI; Suter-Stahel T; Wider G; Ilc G; Plavec J; Bradley SA; Baldisseri DM; Sforça ML; Zeri ACM; Wei JY; Szabo CM; Amezcua CA; Jordan JB; Wikström M
    MAbs; 2019 Jan; 11(1):94-105. PubMed ID: 30570405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetic resonance in target profiling and compound file enhancement.
    Sun C; Hajduk PJ
    Curr Opin Drug Discov Devel; 2006 Jul; 9(4):463-70. PubMed ID: 16889229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparison Between Emerging and Current Biophysical Methods for the Assessment of Higher-Order Structure of Biopharmaceuticals.
    Wen J; Batabyal D; Knutson N; Lord H; Wikström M
    J Pharm Sci; 2020 Jan; 109(1):247-253. PubMed ID: 31669605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined frequency- and time-domain NMR spectroscopy. Application to fast protein resonance assignment.
    Brutscher B
    J Biomol NMR; 2004 May; 29(1):57-64. PubMed ID: 15017139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2D (1)H(N), (15)N Correlated NMR Methods at Natural Abundance for Obtaining Structural Maps and Statistical Comparability of Monoclonal Antibodies.
    Arbogast LW; Brinson RG; Formolo T; Hoopes JT; Marino JP
    Pharm Res; 2016 Feb; 33(2):462-75. PubMed ID: 26453189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An accurate pharmacophore mapping method by NMR spectroscopy.
    Mizukoshi Y; Abe A; Takizawa T; Hanzawa H; Fukunishi Y; Shimada I; Takahashi H
    Angew Chem Int Ed Engl; 2012 Feb; 51(6):1362-5. PubMed ID: 22213544
    [No Abstract]   [Full Text] [Related]  

  • 15. NMR in the acceleration of drug discovery.
    Sem DS; Pellecchia M
    Curr Opin Drug Discov Devel; 2001 Jul; 4(4):479-92. PubMed ID: 11727313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-state nuclear magnetic resonance investigation of protein and polypeptide structure.
    Fu R; Cross TA
    Annu Rev Biophys Biomol Struct; 1999; 28():235-68. PubMed ID: 10410802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional correlated accordion NMR spectroscopy of proteins.
    Ding K; Ithychanda S; Qin J
    J Magn Reson; 2006 Jun; 180(2):203-9. PubMed ID: 16530439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton-detected solid-state NMR spectroscopy of natural-abundance peptide and protein pharmaceuticals.
    Zhou DH; Shah G; Mullen C; Sandoz D; Rienstra CM
    Angew Chem Int Ed Engl; 2009; 48(7):1253-6. PubMed ID: 19130513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PASE (PAramagnetic signals enhancement): a new method for NMR study of paramagnetic proteins.
    Bondon A; Mouro C
    J Magn Reson; 1998 Sep; 134(1):154-7. PubMed ID: 9740741
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.