BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23568816)

  • 21. Improved glutathione production by gene expression in Pichia pastoris.
    Fei L; Wang Y; Chen S
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):729-35. PubMed ID: 19153769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic analysis of antibody producing CHO cells in fed-batch production.
    Dean J; Reddy P
    Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of fungal alpha-amylase by Saccharomyces kluyveri in glucose-limited cultivations.
    Møller K; Sharif MZ; Olsson L
    J Biotechnol; 2004 Aug; 111(3):311-8. PubMed ID: 15246667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptation of Saccharomyces cerevisiae expressing a heterologous protein.
    Krogh AM; Beck V; Christensen LH; Henriksen CM; Møller K; Olsson L
    J Biotechnol; 2008 Oct; 137(1-4):28-33. PubMed ID: 18680768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulating heterologous protein production in yeast: the applicability of truncated auxotrophic markers.
    Kazemi Seresht A; Nørgaard P; Palmqvist EA; Andersen AS; Olsson L
    Appl Microbiol Biotechnol; 2013 May; 97(9):3939-48. PubMed ID: 22782252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae.
    Sasaki H; Uemura H
    Yeast; 2005 Jan; 22(2):111-27. PubMed ID: 15645478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor.
    Belo I; Pinheiro R; Mota M
    Biotechnol Prog; 2003; 19(2):665-71. PubMed ID: 12675615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures.
    Boer VM; Daran JM; Almering MJ; de Winde JH; Pronk JT
    FEMS Yeast Res; 2005 Jul; 5(10):885-97. PubMed ID: 15949974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of metabolic limitations during recombinant protein production in Escherichia coli.
    Heyland J; Blank LM; Schmid A
    J Biotechnol; 2011 Sep; 155(2):178-84. PubMed ID: 21723332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of flow rate pattern on glucose-6-phosphate dehydrogenase synthesis in fed-batch culture of recombinant Saccharomyces cerevisiae.
    Miguel AS; Martins das Neves LC; Vitolo M; Pessoa A
    Biotechnol Prog; 2003; 19(2):320-4. PubMed ID: 12675566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient and direct glutathione production from raw starch using engineered Saccharomyces cerevisiae.
    Yoshida H; Arai S; Hara KY; Yamada R; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1417-22. PubMed ID: 21104244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.
    Yu AQ; Pratomo Juwono NK; Foo JL; Leong SSJ; Chang MW
    Metab Eng; 2016 Mar; 34():36-43. PubMed ID: 26721212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of heating rate on Escherichia coli metabolism, physiological stress, transcriptional response, and production of temperature-induced recombinant protein: a scale-down study.
    Caspeta L; Flores N; Pérez NO; Bolívar F; Ramírez OT
    Biotechnol Bioeng; 2009 Feb; 102(2):468-82. PubMed ID: 18767190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of recombinant precursor pathway variations on poly[(R)-3-hydroxybutyrate] synthesis in Saccharomyces cerevisiae.
    Carlson R; Srienc F
    J Biotechnol; 2006 Jul; 124(3):561-73. PubMed ID: 16530287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-yield production and characterization of biologically active recombinant aprotinin expressed in Saccharomyces cerevisiae.
    Meta A; Nakatake H; Imamura T; Nozaki C; Sugimura K
    Protein Expr Purif; 2009 Jul; 66(1):22-7. PubMed ID: 19233283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production.
    Xu G; Hua Q; Duan N; Liu L; Chen J
    Yeast; 2012 Jun; 29(6):209-17. PubMed ID: 22674684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J
    BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short- and long-term dynamic responses of the metabolic network and gene expression in yeast to a transient change in the nutrient environment.
    Dikicioglu D; Dunn WB; Kell DB; Kirdar B; Oliver SG
    Mol Biosyst; 2012 Jun; 8(6):1760-74. PubMed ID: 22491778
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J
    J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.