These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23568828)

  • 1. High-precision characterization of individual E. coli cell morphology by scanning flow cytometry.
    Konokhova AI; Gelash AA; Yurkin MA; Chernyshev AV; Maltsev VP
    Cytometry A; 2013 Jun; 83(6):568-75. PubMed ID: 23568828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarized light-scattering profile-advanced characterization of nonspherical particles with scanning flow cytometry.
    Strokotov DI; Moskalensky AE; Nekrasov VM; Maltsev VP
    Cytometry A; 2011 Jul; 79(7):570-9. PubMed ID: 21548080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light scattering calculations exploring sensitivity of depolarization ratio to shape changes. II. Single rod-shaped vegetative bacteria in air.
    Bronk BV; Druger SD
    Appl Opt; 2009 Oct; 48(30):5655-63. PubMed ID: 19844297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering.
    Bronk BV; Druger SD; Czégé J; Van de Merwe WP
    Biophys J; 1995 Sep; 69(3):1170-7. PubMed ID: 8519971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ordering of lipid A-monophosphate clusters in aqueous solutions.
    Faunce CA; Reichelt H; Quitschau P; Paradies HH
    J Chem Phys; 2007 Sep; 127(11):115103. PubMed ID: 17887884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Super-resolved calibration-free flow cytometric characterization of platelets and cell-derived microparticles in platelet-rich plasma.
    Konokhova AI; Chernova DN; Moskalensky AE; Strokotov DI; Yurkin MA; Chernyshev AV; Maltsev VP
    Cytometry A; 2016 Feb; 89(2):159-68. PubMed ID: 25808430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering.
    Moskalensky AE; Yurkin MA; Konokhova AI; Strokotov DI; Nekrasov VM; Chernyshev AV; Tsvetovskaya GA; Chikova ED; Maltsev VP
    J Biomed Opt; 2013 Jan; 18(1):17001. PubMed ID: 23288415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mature red blood cells: from optical model to inverse light-scattering problem.
    Gilev KV; Yurkin MA; Chernyshova ES; Strokotov DI; Chernyshev AV; Maltsev VP
    Biomed Opt Express; 2016 Apr; 7(4):1305-10. PubMed ID: 27446656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow cytometer for measurement of the light scattering of viral and other submicroscopic particles.
    Steen HB
    Cytometry A; 2004 Feb; 57(2):94-9. PubMed ID: 14750130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual Escherichia coli cells studied from light scattering with the scanning flow cytometer.
    Shvalov AN; Soini JT; Surovtsev IV; Kochneva GV; Sivolobova GF; Petrov AK; Maltsev VP
    Cytometry; 2000 Sep; 41(1):41-5. PubMed ID: 10942895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light scattering by neutrophils: model, simulation, and experiment.
    Orlova DY; Yurkin MA; Hoekstra AG; Maltsev VP
    J Biomed Opt; 2008; 13(5):054057. PubMed ID: 19021436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier.
    Rajwa B; Venkatapathi M; Ragheb K; Banada PP; Hirleman ED; Lary T; Robinson JP
    Cytometry A; 2008 Apr; 73(4):369-79. PubMed ID: 18163466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light scattering measurement in an arc lamp-based flow cytometer.
    Steen HB
    Cytometry; 1990; 11(2):223-30. PubMed ID: 2180652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2D light scattering static cytometry for label-free single cell analysis with submicron resolution.
    Xie L; Yang Y; Sun X; Qiao X; Liu Q; Song K; Kong B; Su X
    Cytometry A; 2015 Nov; 87(11):1029-37. PubMed ID: 26115102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarized light scattering for rapid observation of bacterial size changes.
    Van de Merwe WP; Li ZZ; Bronk BV; Czégé J
    Biophys J; 1997 Jul; 73(1):500-6. PubMed ID: 9199812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-scattering flow cytometry for identification and characterization of blood microparticles.
    Konokhova AI; Yurkin MA; Moskalensky AE; Chernyshev AV; Tsvetovskaya GA; Chikova ED; Maltsev VP
    J Biomed Opt; 2012 May; 17(5):057006. PubMed ID: 22612145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation.
    Yurkin MA; Semyanov KA; Tarasov PA; Chernyshev AV; Hoekstra AG; Maltsev VP
    Appl Opt; 2005 Sep; 44(25):5249-56. PubMed ID: 16149348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4π light scattering flow cytometry: enhancing the identification and characterization of individual cells.
    Alexandrov EA; Litvinenko AL; Yastrebova ES; Strokotov DI; Nekrasov VM; Gilev KV; Chernyshev AV; Karpenko AA; Maltsev VP
    Anal Methods; 2023 Oct; 15(39):5218-5224. PubMed ID: 37781887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an ultrasensitive dual-channel flow cytometer for the individual analysis of nanosized particles and biomolecules.
    Yang L; Zhu S; Hang W; Wu L; Yan X
    Anal Chem; 2009 Apr; 81(7):2555-63. PubMed ID: 19260698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence-free flow cytometry for measurement of shape index distribution of resting, partially activated, and fully activated platelets.
    Litvinenko AL; Moskalensky AE; Karmadonova NA; Nekrasov VM; Strokotov DI; Konokhova AI; Yurkin MA; Pokushalov EA; Chernyshev AV; Maltsev VP
    Cytometry A; 2016 Nov; 89(11):1010-1016. PubMed ID: 27768824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.