BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 23569110)

  • 1. Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmium-stressed Arabidopsis roots.
    Vescovi M; Zaffagnini M; Festa M; Trost P; Lo Schiavo F; Costa A
    Plant Physiol; 2013 May; 162(1):333-46. PubMed ID: 23569110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications.
    Holtgrefe S; Gohlke J; Starmann J; Druce S; Klocke S; Altmann B; Wojtera J; Lindermayr C; Scheibe R
    Physiol Plant; 2008 Jun; 133(2):211-28. PubMed ID: 18298409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen Sulfide Regulates the Cytosolic/Nuclear Partitioning of Glyceraldehyde-3-Phosphate Dehydrogenase by Enhancing its Nuclear Localization.
    Aroca A; Schneider M; Scheibe R; Gotor C; Romero LC
    Plant Cell Physiol; 2017 Jun; 58(6):983-992. PubMed ID: 28444344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro.
    Bedhomme M; Adamo M; Marchand CH; Couturier J; Rouhier N; Lemaire SD; Zaffagnini M; Trost P
    Biochem J; 2012 Aug; 445(3):337-47. PubMed ID: 22607208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis.
    Muñoz-Bertomeu J; Cascales-Miñana B; Mulet JM; Baroja-Fernández E; Pozueta-Romero J; Kuhn JM; Segura J; Ros R
    Plant Physiol; 2009 Oct; 151(2):541-58. PubMed ID: 19675149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium- and Nitric Oxide-Dependent Nuclear Accumulation of Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase in Response to Long Chain Bases in Tobacco BY-2 Cells.
    Testard A; Da Silva D; Ormancey M; Pichereaux C; Pouzet C; Jauneau A; Grat S; Robe E; Brière C; Cotelle V; Mazars C; Thuleau P
    Plant Cell Physiol; 2016 Oct; 57(10):2221-2231. PubMed ID: 27585463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytosolic GAPDH as a redox-dependent regulator of energy metabolism.
    Schneider M; Knuesting J; Birkholz O; Heinisch JJ; Scheibe R
    BMC Plant Biol; 2018 Sep; 18(1):184. PubMed ID: 30189844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings.
    Cuypers A; Smeets K; Ruytinx J; Opdenakker K; Keunen E; Remans T; Horemans N; Vanhoudt N; Van Sanden S; Van Belleghem F; Guisez Y; Colpaert J; Vangronsveld J
    J Plant Physiol; 2011 Mar; 168(4):309-16. PubMed ID: 20828869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses.
    Henry E; Fung N; Liu J; Drakakaki G; Coaker G
    PLoS Genet; 2015 Apr; 11(4):e1005199. PubMed ID: 25918875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptor protein kinase FERONIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase.
    Yang T; Wang L; Li C; Liu Y; Zhu S; Qi Y; Liu X; Lin Q; Luan S; Yu F
    Biochem Biophys Res Commun; 2015 Sep; 465(1):77-82. PubMed ID: 26232644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of nitrosylation and denitrosylation of cytoplasmic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana.
    Zaffagnini M; Morisse S; Bedhomme M; Marchand CH; Festa M; Rouhier N; Lemaire SD; Trost P
    J Biol Chem; 2013 Aug; 288(31):22777-89. PubMed ID: 23749990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase.
    Rius SP; Casati P; Iglesias AA; Gomez-Casati DF
    Plant Mol Biol; 2006 Aug; 61(6):945-57. PubMed ID: 16927206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The E3 ubiquitin-ligase SEVEN IN ABSENTIA like 7 mono-ubiquitinates glyceraldehyde-3-phosphate dehydrogenase 1 isoform in vitro and is required for its nuclear localization in Arabidopsis thaliana.
    Peralta DA; Araya A; Busi MV; Gomez-Casati DF
    Int J Biochem Cell Biol; 2016 Jan; 70():48-56. PubMed ID: 26582368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor.
    Terrile MC; París R; Calderón-Villalobos LI; Iglesias MJ; Lamattina L; Estelle M; Casalongué CA
    Plant J; 2012 May; 70(3):492-500. PubMed ID: 22171938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytosolic phosphorylating glyceraldehyde-3-phosphate dehydrogenases affect Arabidopsis cellular metabolism and promote seed oil accumulation.
    Guo L; Ma F; Wei F; Fanella B; Allen DK; Wang X
    Plant Cell; 2014 Jul; 26(7):3023-35. PubMed ID: 24989043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible role of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase in growth promotion of Arabidopsis seedlings by low levels of selenium.
    Takeda T; Fukui Y
    Biosci Biotechnol Biochem; 2015; 79(10):1579-86. PubMed ID: 25988618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis.
    Yuan HM; Huang X
    Plant Cell Environ; 2016 Jan; 39(1):120-35. PubMed ID: 26138870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox-sensitive bZIP68 plays a role in balancing stress tolerance with growth in Arabidopsis.
    Li Y; Liu W; Zhong H; Zhang HL; Xia Y
    Plant J; 2019 Nov; 100(4):768-783. PubMed ID: 31348568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidic acid binds to cytosolic glyceraldehyde-3-phosphate dehydrogenase and promotes its cleavage in Arabidopsis.
    Kim SC; Guo L; Wang X
    J Biol Chem; 2013 Apr; 288(17):11834-44. PubMed ID: 23504314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis.
    Jagadeeswaran G; Li YF; Sunkar R
    Plant J; 2014 Jan; 77(1):85-96. PubMed ID: 24164591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.