These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23569624)

  • 1. Spatial and Temporal Algorithm Evaluation for Detecting Over-The-Counter Thermometer Sale Increases during 2009 H1N1 Pandemic.
    Que J; Tsui FC
    Online J Public Health Inform; 2012; 4(1):. PubMed ID: 23569624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rank-based spatial clustering: an algorithm for rapid outbreak detection.
    Que J; Tsui FC
    J Am Med Inform Assoc; 2011 May; 18(3):218-24. PubMed ID: 21486881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial cluster detection using dynamic programming.
    Sverchkov Y; Jiang X; Cooper GF
    BMC Med Inform Decis Mak; 2012 Mar; 12():22. PubMed ID: 22443103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new prior for bayesian anomaly detection: application to biosurveillance.
    Shen Y; Cooper GF
    Methods Inf Med; 2010; 49(1):44-53. PubMed ID: 20027381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-level spatial clustering algorithm for detection of disease outbreaks.
    Que J; Tsui FC
    AMIA Annu Symp Proc; 2008 Nov; 2008():611-5. PubMed ID: 18999304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-ALIRT biosurveillance detection algorithm evaluation.
    Siegrist D; Pavlin J
    MMWR Suppl; 2004 Sep; 53():152-8. PubMed ID: 15714645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An empirical comparison of spatial scan statistics for outbreak detection.
    Neill DB
    Int J Health Geogr; 2009 Apr; 8():20. PubMed ID: 19371431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of data aggregation in biosurveillance detection strategies with applications from ESSENCE.
    Burkom HS; Elbert Y; Feldman A; Lin J
    MMWR Suppl; 2004 Sep; 53():67-73. PubMed ID: 15714632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Data Using Deep Learning: Early Detection of COVID-19 Outbreak in Italy.
    Karadayi Y; Aydin MN; Ogrenci AS
    IEEE Access; 2020; 8():164155-164177. PubMed ID: 34931155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation-Based Evaluation of the Performances of an Algorithm for Detecting Abnormal Disease-Related Features in Cattle Mortality Records.
    Perrin JB; Durand B; Gay E; Ducrot C; Hendrikx P; Calavas D; Hénaux V
    PLoS One; 2015; 10(11):e0141273. PubMed ID: 26536596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmark data and power calculations for evaluating disease outbreak detection methods.
    Kulldorff M; Zhang Z; Hartman J; Heffernan R; Huang L; Mostashari F
    MMWR Suppl; 2004 Sep; 53():144-51. PubMed ID: 15714644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint assessment of temporal segmentation, time unit and detection algorithms in syndromic surveillance.
    Brilleaud S; Durand B; Le Strat Y; Sala C
    Prev Vet Med; 2022 Jun; 203():105619. PubMed ID: 35366535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring.
    Takahashi K; Kulldorff M; Tango T; Yih K
    Int J Health Geogr; 2008 Apr; 7():14. PubMed ID: 18402711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and evaluation of a data-adaptive alerting algorithm for univariate temporal biosurveillance data.
    Elbert Y; Burkom HS
    Stat Med; 2009 Nov; 28(26):3226-48. PubMed ID: 19725023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The comparative performance of wavelet-based outbreak detector, exponential weighted moving average, and Poisson regression-based methods in detection of pertussis outbreaks in Iranian infants: A simulation-based study.
    Alimohamadi Y; Zahraei SM; Karami M; Yaseri M; Lotfizad M; Holakouie-Naieni K
    Pediatr Pulmonol; 2020 Dec; 55(12):3497-3508. PubMed ID: 32827358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the determinants of outbreak detection performance through simulation and machine learning.
    Jafarpour N; Izadi M; Precup D; Buckeridge DL
    J Biomed Inform; 2015 Feb; 53():180-7. PubMed ID: 25445482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A context-sensitive approach to anonymizing spatial surveillance data: impact on outbreak detection.
    Cassa CA; Grannis SJ; Overhage JM; Mandl KD
    J Am Med Inform Assoc; 2006; 13(2):160-5. PubMed ID: 16357353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of multiple data streams to conduct Bayesian biologic surveillance.
    Wong WK; Cooper G; Dash D; Levander J; Dowling J; Hogan W; Wagner M
    MMWR Suppl; 2005 Aug; 54():63-9. PubMed ID: 16177695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring the effect of commuting on the performance of the Bayesian Aerosol Release Detector.
    Cami A; Wallstrom GL; Hogan WR
    BMC Med Inform Decis Mak; 2009 Nov; 9 Suppl 1(Suppl 1):S7. PubMed ID: 19891801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An adaptive prediction and detection algorithm for multistream syndromic surveillance.
    Najmi AH; Magruder SF
    BMC Med Inform Decis Mak; 2005 Oct; 5():33. PubMed ID: 16221308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.