These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 23570440)

  • 1. Absolute single-ion solvation free energy scale in methanol determined by the lithium cluster-continuum approach.
    Pliego JR; Miguel EL
    J Phys Chem B; 2013 May; 117(17):5129-35. PubMed ID: 23570440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.
    Carvalho NF; Pliego JR
    Phys Chem Chem Phys; 2015 Oct; 17(40):26745-55. PubMed ID: 26395146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton.
    Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absolute solvation free energy of Li+ and Na+ ions in dimethyl sulfoxide solution: a theoretical ab initio and cluster-continuum model study.
    Westphal E; Pliego JR
    J Chem Phys; 2005 Aug; 123(7):074508. PubMed ID: 16229602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvation Energies of the Proton in Methanol.
    Fifen JJ; Nsangou M; Dhaouadi Z; Motapon O; Jaidane NE
    J Chem Theory Comput; 2013 Feb; 9(2):1173-81. PubMed ID: 26588760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ambiguities in solvation free energies from cluster-continuum quasichemical theory: lithium cation in protic and aprotic solvents.
    Itkis D; Cavallo L; Yashina LV; Minenkov Y
    Phys Chem Chem Phys; 2021 Aug; 23(30):16077-16088. PubMed ID: 34291782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models.
    Bryantsev VS; Diallo MS; Goddard WA
    J Phys Chem B; 2008 Aug; 112(32):9709-19. PubMed ID: 18646800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the energy of the water exchange reaction and free energy of solvation for the uranyl ion in aqueous solution.
    Gutowski KE; Dixon DA
    J Phys Chem A; 2006 Jul; 110(28):8840-56. PubMed ID: 16836448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-ion solvation free energies and the normal hydrogen electrode potential in methanol, acetonitrile, and dimethyl sulfoxide.
    Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem B; 2007 Jan; 111(2):408-22. PubMed ID: 17214493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-examining the tetraphenyl-arsonium/tetraphenyl-borate (TATB) hypothesis for single-ion solvation free energies.
    Pollard TP; Beck TL
    J Chem Phys; 2018 Jun; 148(22):222830. PubMed ID: 29907029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved cluster pair correlation method for obtaining the absolute proton hydration energy and enthalpy evaluated with an expanded data set.
    Donald WA; Williams ER
    J Phys Chem B; 2010 Oct; 114(41):13189-200. PubMed ID: 20863092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermochemistry of arylselanyl radicals and the pertinent ions in acetonitrile.
    Holm AH; Yusta L; Carlqvist P; Brinck T; Daasbjerg K
    J Am Chem Soc; 2003 Feb; 125(8):2148-57. PubMed ID: 12590543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations.
    Riccardi D; Guo HB; Parks JM; Gu B; Liang L; Smith JC
    J Chem Theory Comput; 2013 Jan; 9(1):555-69. PubMed ID: 26589054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum mechanical continuum solvation models for ionic liquids.
    Bernales VS; Marenich AV; Contreras R; Cramer CJ; Truhlar DG
    J Phys Chem B; 2012 Aug; 116(30):9122-9. PubMed ID: 22734466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of solvation in the reduction of the uranyl dication by water: a density functional study.
    Moskaleva LV; Krüger S; Spörl A; Rösch N
    Inorg Chem; 2004 Jun; 43(13):4080-90. PubMed ID: 15206891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cluster expansion of the solvation free energy difference: Systematic improvements in the solvation of single ions.
    Pliego JR
    J Chem Phys; 2017 Jul; 147(3):034104. PubMed ID: 28734282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical prediction of pKa in methanol: testing SM8 and SMD models for carboxylic acids, phenols, and amines.
    Miguel EL; Silva PL; Pliego JR
    J Phys Chem B; 2014 May; 118(21):5730-9. PubMed ID: 24820398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.