These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 23570679)
1. Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor. Pires L; Sachsenheimer K; Kleintschek T; Waldbaur A; Schwartz T; Rapp BE Biosens Bioelectron; 2013 Sep; 47():157-63. PubMed ID: 23570679 [TBL] [Abstract][Full Text] [Related]
2. Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity. Bruchmann J; Sachsenheimer K; Rapp BE; Schwartz T PLoS One; 2015; 10(2):e0117300. PubMed ID: 25706987 [TBL] [Abstract][Full Text] [Related]
3. Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry. Dheilly A; Linossier I; Darchen A; Hadjiev D; Corbel C; Alonso V Appl Microbiol Biotechnol; 2008 May; 79(1):157-64. PubMed ID: 18330564 [TBL] [Abstract][Full Text] [Related]
4. The Application of Impedance Microsensors for Real-Time Analysis of Pseudomonas aeruginosa Biofilm Formation. Chabowski K; Junka AF; Szymczyk P; Piasecki T; Sierakowski A; Mączynska B; Nitsch K Pol J Microbiol; 2015; 64(2):115-20. PubMed ID: 26373170 [TBL] [Abstract][Full Text] [Related]
5. Influence of attached bacteria and biofilm on double-layer capacitance during biofilm monitoring by electrochemical impedance spectroscopy. Kim T; Kang J; Lee JH; Yoon J Water Res; 2011 Oct; 45(15):4615-22. PubMed ID: 21762943 [TBL] [Abstract][Full Text] [Related]
6. Long-term monitoring of biofilm growth and disinfection using a quartz crystal microbalance and reflectance measurements. Reipa V; Almeida J; Cole KD J Microbiol Methods; 2006 Sep; 66(3):449-59. PubMed ID: 16580080 [TBL] [Abstract][Full Text] [Related]
7. Modeling growth and quorum sensing in biofilms grown in microfluidic chambers. Janakiraman V; Englert D; Jayaraman A; Baskaran H Ann Biomed Eng; 2009 Jun; 37(6):1206-16. PubMed ID: 19291402 [TBL] [Abstract][Full Text] [Related]
8. Study of Real-Time Spatial and Temporal Behavior of Bacterial Biofilms Using 2-D Impedance Spectroscopy. Begly C; Ackart D; Mylius J; Basaraba R; Chicco AJ; Chen TW IEEE Trans Biomed Circuits Syst; 2020 Oct; 14(5):1051-1064. PubMed ID: 32746361 [TBL] [Abstract][Full Text] [Related]
9. Detection and monitoring of biofilm formation in water treatment systems by quartz crystal microbalance sensors. Sprung C; Wählisch D; Hüttl R; Seidel J; Meyer A; Wolf G Water Sci Technol; 2009; 59(3):543-8. PubMed ID: 19214009 [TBL] [Abstract][Full Text] [Related]
10. An in vitro urinary tract catheter system to investigate biofilm development in catheter-associated urinary tract infections. Dohnt K; Sauer M; Müller M; Atallah K; Weidemann M; Gronemeyer P; Rasch D; Tielen P; Krull R J Microbiol Methods; 2011 Dec; 87(3):302-8. PubMed ID: 21939694 [TBL] [Abstract][Full Text] [Related]
11. Differential effects of Pseudomonas aeruginosa on biofilm formation by different strains of Staphylococcus epidermidis. Pihl M; Davies JR; Chávez de Paz LE; Svensäter G FEMS Immunol Med Microbiol; 2010 Aug; 59(3):439-46. PubMed ID: 20528934 [TBL] [Abstract][Full Text] [Related]
12. Exploiting a new electrochemical sensor for biofilm monitoring and water treatment optimization. Pavanello G; Faimali M; Pittore M; Mollica A; Mollica A; Mollica A Water Res; 2011 Feb; 45(4):1651-8. PubMed ID: 21186042 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous monitoring of Staphylococcus aureus growth in a multi-parametric microfluidic platform using microscopy and impedance spectroscopy. Estrada-Leypon O; Moya A; Guimera A; Gabriel G; Agut M; Sanchez B; Borros S Bioelectrochemistry; 2015 Oct; 105():56-64. PubMed ID: 26004850 [TBL] [Abstract][Full Text] [Related]
14. Flexible Platform for In Situ Impedimetric Detection and Bioelectric Effect Treatment of Escherichia Coli Biofilms. Huiszoon RC; Subramanian S; Ramiah Rajasekaran P; Beardslee LA; Bentley WE; Ghodssi R IEEE Trans Biomed Eng; 2019 May; 66(5):1337-1345. PubMed ID: 30281429 [TBL] [Abstract][Full Text] [Related]
15. Biofilms of Listeria monocytogenes produced at 12 °C either in pure culture or in co-culture with Pseudomonas aeruginosa showed reduced susceptibility to sanitizers. Lourenço A; Machado H; Brito L J Food Sci; 2011 Mar; 76(2):M143-8. PubMed ID: 21535778 [TBL] [Abstract][Full Text] [Related]
16. [Biofilm formation by Pseudomonas aeruginosa strains of Ukrainian collection of microorganisms]. Balko AB; Balko OI; Avdeeva LV Mikrobiol Z; 2013; 75(2):50-6. PubMed ID: 23720964 [TBL] [Abstract][Full Text] [Related]
17. Role of dose concentration in biocide efficacy against Pseudomonas aeruginosa biofilms. Grobe KJ; Zahller J; Stewart PS J Ind Microbiol Biotechnol; 2002 Jul; 29(1):10-5. PubMed ID: 12080421 [TBL] [Abstract][Full Text] [Related]
18. Comparison of antibiotic susceptibility and plasmid content, between biofilm producing and non-producing clinical isolates of Pseudomonas aeruginosa. Delissalde F; Amábile-Cuevas CF Int J Antimicrob Agents; 2004 Oct; 24(4):405-8. PubMed ID: 15380270 [TBL] [Abstract][Full Text] [Related]
19. Monitoring of bacteria biofilms forming process by in-situ impedimetric biosensor chip. Liu L; Xu Y; Cui F; Xia Y; Chen L; Mou X; Lv J Biosens Bioelectron; 2018 Jul; 112():86-92. PubMed ID: 29698812 [TBL] [Abstract][Full Text] [Related]
20. Investigating electrochemical removal of bacterial biofilms from stainless steel substrates. Dargahi M; Hosseinidoust Z; Tufenkji N; Omanovic S Colloids Surf B Biointerfaces; 2014 May; 117():152-7. PubMed ID: 24681392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]