These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23571021)

  • 1. Change of carcinogenic chrysotile fibers in the asbestos cement (eternit) to harmless waste by artificial carbonatization: petrological and technological results.
    Radvanec M; Tuček L; Derco J; Čechovská K; Németh Z
    J Hazard Mater; 2013 May; 252-253():390-400. PubMed ID: 23571021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation tests to assess occupational exposure to airborne asbestos from artificially weathered asphalt-based roofing products.
    Sheehan P; Mowat F; Weidling R; Floyd M
    Ann Occup Hyg; 2010 Nov; 54(8):880-92. PubMed ID: 20923966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid.
    Nam SN; Jeong S; Lim H
    J Hazard Mater; 2014 Jan; 265():151-7. PubMed ID: 24361492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal conversion of chrysotile asbestos using near supercritical conditions.
    Anastasiadou K; Axiotis D; Gidarakos E
    J Hazard Mater; 2010 Jul; 179(1-3):926-32. PubMed ID: 20427128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxicity and carcinogenicity of chrysotile fibres from asbestos-cement products.
    Tilkes F; Beck EG
    IARC Sci Publ; 1989; (90):190-6. PubMed ID: 2545608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing asbestos cement from fiber-reinforced cement through portable µ-Raman spectroscopy and portable X-ray fluorescence.
    Bloise A; Miriello D
    Environ Monit Assess; 2022 Aug; 194(10):679. PubMed ID: 35974209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Releasability of asbestos fibers from weathered roof cement.
    Oberta AF; Poye L; Compton SP
    J Occup Environ Hyg; 2018 Jun; 15(6):466-473. PubMed ID: 29580193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ ESEM study of the thermal decomposition of chrysotile asbestos in view of safe recycling of the transformation product.
    Gualtieri AF; Gualtieri ML; Tonelli M
    J Hazard Mater; 2008 Aug; 156(1-3):260-6. PubMed ID: 18234421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable bio-hydrothermal sequencing treatment for asbestos-cement wastes.
    Spasiano D; Luongo V; Race M; Petrella A; Fiore S; Apollonio C; Pirozzi F; Fratino U; Piccinni AF
    J Hazard Mater; 2019 Feb; 364():256-263. PubMed ID: 30368063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experimental rationale for carcinogenic risk of asbestos cement industry and its products].
    Pylev DN; Smirnova OV; Vasil'eva LA; Khrustalev SA; Vezentsev AI; Gudkova EA; Naumova LN
    Gig Sanit; 2010; (6):61-5. PubMed ID: 21381365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil-pH and cement influence the weathering kinetics of chrysotile asbestos in soils and its hydroxyl radical yield.
    Walter M; Geroldinger G; Gille L; Kraemer SM; Schenkeveld WDC
    J Hazard Mater; 2022 Jun; 431():128068. PubMed ID: 35359096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling the product of thermal transformation of cement-asbestos for the preparation of calcium sulfoaluminate clinker.
    Viani A; Gualtieri AF
    J Hazard Mater; 2013 Sep; 260():813-8. PubMed ID: 23856311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Ecological and occupational evaluation of chrysotile-asbestos fibers emitted during construction and exploitation by roof materials made of asbestos cement].
    Plotko EG; Domnin SG; Kashanskiĭ SV; Kulikov VG; Seliankina KP; Bogdanov GB; Manakova NS
    Med Tr Prom Ekol; 2000; (11):41-5. PubMed ID: 11280286
    [No Abstract]   [Full Text] [Related]  

  • 14. A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type.
    Berman DW; Crump KS
    Crit Rev Toxicol; 2008; 38 Suppl 1():49-73. PubMed ID: 18686078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological changes during enhanced carbonation of asbestos containing material and its comparison to magnesium silicate minerals.
    Gadikota G; Natali C; Boschi C; Park AH
    J Hazard Mater; 2014 Jan; 264():42-52. PubMed ID: 24269972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The problem of determining asbestos in bulk materials: a study of the effect of grinding on the diffractometric response of the chrysotile content in an asbestos cement sample].
    Puledda S; Paoletti L
    Med Lav; 1993; 84(4):297-305. PubMed ID: 8255261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asbestos exposure during renovation and demolition of asbestos-cement clad buildings.
    Brown SK
    Am Ind Hyg Assoc J; 1987 May; 48(5):478-86. PubMed ID: 3591670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Fiber emissions from weathered asbestos cement products. 2. Physical-chemical properties of liberated asbestos fibers].
    Spurny K; Marfels H; Boose C; Weiss G; Opiela H; Wulbeck FJ
    Zentralbl Hyg Umweltmed; 1989 Jun; 188(3-4):262-70. PubMed ID: 2547393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asbestos fibre release by corroded and weathered asbestos-cement products.
    Spurny KR
    IARC Sci Publ; 1989; (90):367-71. PubMed ID: 2744837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Impact of modification of the fiber surface of chrysotile on its biological activity].
    Pylev LN; Smirnova OV; Vasil'eva LA; Vezentsev AI; Gudkova EA; Naumova LN; Neĭman SM
    Gig Sanit; 2007; (2):77-80. PubMed ID: 17526242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.