BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 23571308)

  • 1. Quantification of the Young's modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC).
    Nezhad AS; Naghavi M; Packirisamy M; Bhat R; Geitmann A
    Lab Chip; 2013 Jul; 13(13):2599-608. PubMed ID: 23571308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device.
    Hu C; Munglani G; Vogler H; Ndinyanka Fabrice T; Shamsudhin N; Wittel FK; Ringli C; Grossniklaus U; Herrmann HJ; Nelson BJ
    Lab Chip; 2016 Dec; 17(1):82-90. PubMed ID: 27883138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Massively Parallelized Pollen Tube Guidance and Mechanical Measurements on a Lab-on-a-Chip Platform.
    Shamsudhin N; Laeubli N; Atakan HB; Vogler H; Hu C; Haeberle W; Sebastian A; Grossniklaus U; Nelson BJ
    PLoS One; 2016; 11(12):e0168138. PubMed ID: 27977748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling.
    Sanati Nezhad A; Naghavi M; Packirisamy M; Bhat R; Geitmann A
    Proc Natl Acad Sci U S A; 2013 May; 110(20):8093-8. PubMed ID: 23630253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lab-on-a-chip for studying growing pollen tubes.
    Agudelo CG; Packirisamy M; Geitmann A
    Methods Mol Biol; 2014; 1080():237-48. PubMed ID: 24132434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring the quasi-static Young's modulus of the eardrum using an indentation technique.
    Hesabgar SM; Marshall H; Agrawal SK; Samani A; Ladak HM
    Hear Res; 2010 May; 263(1-2):168-76. PubMed ID: 20146934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pollen tube: a soft shell with a hard core.
    Vogler H; Draeger C; Weber A; Felekis D; Eichenberger C; Routier-Kierzkowska AL; Boisson-Dernier A; Ringli C; Nelson BJ; Smith RS; Grossniklaus U
    Plant J; 2013 Feb; 73(4):617-27. PubMed ID: 23106269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion.
    Kamgoué A; Ohayon J; Tracqui P
    J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of AGP contribution to the dynamic assembly and mechanical properties of cell wall during pollen tube growth.
    Leszczuk A; Kozioł A; Szczuka E; Zdunek A
    Plant Sci; 2019 Apr; 281():9-18. PubMed ID: 30824065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of young's modulus of human tympanic membrane at high strain rates.
    Luo H; Dai C; Gan RZ; Lu H
    J Biomech Eng; 2009 Jun; 131(6):064501. PubMed ID: 19449971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the Young's Modulus of the Bacterial Cell Envelope.
    Lee J; Jha K; Harper CE; Zhang W; Ramsukh M; Bouklas N; Dörr T; Chen P; Hernandez CJ
    ACS Biomater Sci Eng; 2024 May; 10(5):2956-2966. PubMed ID: 38593061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Material modeling of biofilm mechanical properties.
    Laspidou CS; Spyrou LA; Aravas N; Rittmann BE
    Math Biosci; 2014 May; 251():11-5. PubMed ID: 24560820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis.
    Rohani SA; Ghomashchi S; Agrawal SK; Ladak HM
    Hear Res; 2017 Mar; 345():69-78. PubMed ID: 28087415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical evaluation of bulk material properties of dental composites using two-phase finite element models.
    Li J; Li H; Fok AS; Watts DC
    Dent Mater; 2012 Sep; 28(9):996-1003. PubMed ID: 22727356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural mechanics of filamentous cyanobacteria.
    Faluweki MK; Goehring L
    J R Soc Interface; 2022 Jul; 19(192):20220268. PubMed ID: 35892203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis.
    Sanati Nezhad A; Ghanbari M; Agudelo CG; Naghavi M; Packirisamy M; Bhat RB; Geitmann A
    Biomed Microdevices; 2014 Feb; 16(1):23-33. PubMed ID: 24013680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro study of oscillatory growth dynamics of Camellia pollen tubes in microfluidic environment.
    Nezhad AS; Packirisamy M; Bhat R; Geitmann A
    IEEE Trans Biomed Eng; 2013 Nov; 60(11):3185-93. PubMed ID: 23807421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous measurement of turgor pressure and cell wall elasticity in growing pollen tubes.
    Vogler H; Burri JT; Nelson BJ; Grossniklaus U
    Methods Cell Biol; 2020; 160():297-310. PubMed ID: 32896323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring the transverse Young's modulus of maize rind and pith tissues.
    Stubbs CJ; Sun W; Cook DD
    J Biomech; 2019 Feb; 84():113-120. PubMed ID: 30635117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apparent Young's modulus of vertebral cortico-cancellous bone specimens.
    El Masri F; Sapin de Brosses E; Rhissassi K; Skalli W; Mitton D
    Comput Methods Biomech Biomed Engin; 2012; 15(1):23-8. PubMed ID: 21749276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.