BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

776 related articles for article (PubMed ID: 23571418)

  • 1. Resting-state fMRI confounds and cleanup.
    Murphy K; Birn RM; Bandettini PA
    Neuroimage; 2013 Oct; 80():349-59. PubMed ID: 23571418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurovascular factors in resting-state functional MRI.
    Liu TT
    Neuroimage; 2013 Oct; 80():339-48. PubMed ID: 23644003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional connectivity in BOLD and CBF data: similarity and reliability of resting brain networks.
    Jann K; Gee DG; Kilroy E; Schwab S; Smith RX; Cannon TD; Wang DJ
    Neuroimage; 2015 Feb; 106():111-22. PubMed ID: 25463468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
    Chu PPW; Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Neuroimage; 2018 Jun; 173():72-87. PubMed ID: 29452265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic functional connectivity: promise, issues, and interpretations.
    Hutchison RM; Womelsdorf T; Allen EA; Bandettini PA; Calhoun VD; Corbetta M; Della Penna S; Duyn JH; Glover GH; Gonzalez-Castillo J; Handwerker DA; Keilholz S; Kiviniemi V; Leopold DA; de Pasquale F; Sporns O; Walter M; Chang C
    Neuroimage; 2013 Oct; 80():360-78. PubMed ID: 23707587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial heterogeneity of the relation between resting-state connectivity and blood flow: an important consideration for pharmacological studies.
    Khalili-Mahani N; van Osch MJ; de Rooij M; Beckmann CF; van Buchem MA; Dahan A; van Gerven JM; Rombouts SA
    Hum Brain Mapp; 2014 Mar; 35(3):929-42. PubMed ID: 23281174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating the complementarity of resting-state networks derived from dynamic [
    Ionescu TM; Amend M; Hafiz R; Biswal BB; Wehrl HF; Herfert K; Pichler BJ
    Neuroimage; 2021 Aug; 236():118045. PubMed ID: 33848625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function.
    Mark CI; Mazerolle EL; Chen JJ
    J Magn Reson Imaging; 2015 Aug; 42(2):231-46. PubMed ID: 25727523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination.
    Shirer WR; Jiang H; Price CM; Ng B; Greicius MD
    Neuroimage; 2015 Aug; 117():67-79. PubMed ID: 25987368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of scan length on the reliability of resting-state fMRI connectivity estimates.
    Birn RM; Molloy EK; Patriat R; Parker T; Meier TB; Kirk GR; Nair VA; Meyerand ME; Prabhakaran V
    Neuroimage; 2013 Dec; 83():550-8. PubMed ID: 23747458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the 'resting' brain.
    Auer DP
    Magn Reson Imaging; 2008 Sep; 26(7):1055-64. PubMed ID: 18657923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.
    Archila-Meléndez ME; Sorg C; Preibisch C
    Neuroimage; 2020 Sep; 218():116871. PubMed ID: 32335261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The association between resting-state functional magnetic resonance imaging and aortic pulse-wave velocity in healthy adults.
    Hussein A; Matthews JL; Syme C; Macgowan C; MacIntosh BJ; Shirzadi Z; Pausova Z; Paus T; Chen JJ
    Hum Brain Mapp; 2020 Jun; 41(8):2121-2135. PubMed ID: 32034832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Functional connectivity analysis of the brain network using resting-state FMRI].
    Hayashi T
    Brain Nerve; 2011 Dec; 63(12):1307-18. PubMed ID: 22147450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI.
    Almgren H; Van de Steen F; Razi A; Friston K; Marinazzo D
    Neuroimage; 2020 Mar; 208():116435. PubMed ID: 31816423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of resting state condition on reliability, trait specificity, and network connectivity of brain function measured with arterial spin labeled perfusion MRI.
    Li Z; Vidorreta M; Katchmar N; Alsop DC; Wolf DH; Detre JA
    Neuroimage; 2018 Jun; 173():165-175. PubMed ID: 29454933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. fMRI resting state networks define distinct modes of long-distance interactions in the human brain.
    De Luca M; Beckmann CF; De Stefano N; Matthews PM; Smith SM
    Neuroimage; 2006 Feb; 29(4):1359-67. PubMed ID: 16260155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A practical modification to a resting state fMRI protocol for improved characterization of cerebrovascular function.
    Stickland RC; Zvolanek KM; Moia S; Ayyagari A; Caballero-Gaudes C; Bright MG
    Neuroimage; 2021 Oct; 239():118306. PubMed ID: 34175427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.